Skip to main content
Log in

Cloning and characterization of GPAT gene from Lepidium latifolium L.: a step towards translational research in agri-genomics for food and fuel

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Glycerol-3-phosphate acyltransferase (GPAT) catalyzes first and the rate limiting step in glycerolipid synthesis pathway, which in turn contribute to stabilization of plasma membrane structure and oil lipid synthesis in plant cells. Here, we report cloning and characterization of GPAT gene from Lepidium latifolium (LlaGPAT). The cDNA sequence (1,615 bp) of LlaGPAT gene consisted of 1,113 bp ORF encoding a protein of 370 aa residues, with deduced mass of 41.2 kDa and four acyltransferase (AT) motifs having role in catalysis and in glycerol-3-phosphate binding. Southern blot analysis suggested presence of a single copy of the gene in the genome. Tissue specific expression of the gene was seen more abundantly in aerial parts, compared to the roots. Quantitative real-time PCR indicated down-regulation of the gene by cold (4 °C), drought (PEG6000), salt (300 mM NaCl) and ABA (100 μM) treatments. Considering the vitality of the function of encoded enzyme, LlaGPAT can be considered a potential candidate gene for genetic engineering of oil yields and abiotic stress management in food as well as fuel crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GPAT:

Glycerol-3-phosphate acyltransferase

PEG:

Poly ethylene glycol

RACE:

Rapid amplification of cDNA ends

RT-PCR:

Reverse transcription-PCR

TAG:

Triacylglycerol

qPCR:

Quantitative PCR

References

  1. Wendel AA, Lewin TM, Coleman RA (2009) Glycerol-3-phosphate acyltransferases: rate limiting enzymes of triacylglycerol biosynthesis. Biochim Biophys Acta 1791:501–506

    Article  PubMed  CAS  Google Scholar 

  2. Xu C, Yu B, Cornish AJ, Froehlich JE, Benning C (2006) Phosphatidylglycerol biosynthesis in chloroplasts of Arabidopsis mutants deficient in acyl-ACP glycerol-3-phosphate acyltransferase. Plant J 47:296–309

    Article  PubMed  CAS  Google Scholar 

  3. Roy R, Ordovas L, Taourit S, Zaragoza P, Eggen A, Rodellar C (2006) Genomic structure and an alternative transcript of bovine mitochondrial glycerol-3-phosphate acyltransferase gene (GPAT). Cytogenet Genome Res 112:82–89

    Article  PubMed  CAS  Google Scholar 

  4. Nishida I, Tasaka Y, Shiraishi H, Murata N (1993) The gene and the RNA for the precursor to the plastid-located glycerol-3-phosphate acyltransferase of Arabidopsis thaliana. Plant Mol Biol 21:267–277

    Article  PubMed  CAS  Google Scholar 

  5. Liu JM, Chen SN, Yan B, Huang XQ, Yang MZ (1999) Cloning and sequencing of the cDNA (Accession No. AF090734) coding for glycerol-3-phosphate acyltransferase from Vicia faba. Plant Physiol 20:934

    Google Scholar 

  6. Weber S, Wolter FP, Buck F, Frentzen M, Heinz E (1991) Purification and cDNA sequencing of an oleate-selective acyl-ACO:sn-glycerol-3-phosphate acyltransferase from pea chloroplasts. Plant Mol Biol 17:1067–1076

    Article  PubMed  CAS  Google Scholar 

  7. Moon BY, Higashi S, Gombos Z, Murata N (1995) Unsaturation of the membrane lipids of chloroplasts stabilizes the photosynthetic machinery against low-temperature photoinhibition in transgenic tobacco plants. Proc Natl Acad Sci USA 92:6215–6218

    Article  Google Scholar 

  8. Murata N, Tasaka Y (1997) Glycerol-3-phosphate acyltransferase in plants. Biochim Biophys Acta 1348:10–16

    Article  PubMed  CAS  Google Scholar 

  9. Sui N, Li M, Zhao SJ, Li F, Liang H, Meng QW (2007) Over-expression of glycerol-3-phosphate acyltransferase gene improves chilling tolerance in tomato. Planta 226:1097–1108

    Article  PubMed  CAS  Google Scholar 

  10. Akbar E, Yakoob Z, Kamarudin SK, Ismail M, Salimon J (2009) Characteristic and composition of Jatropha curcas oil seed from Malaysia and its potential as biodiesel feedstock. Eur J Sci Res 91:162–163

    Google Scholar 

  11. Chen X, Snyder CL, Truksa M, Shah S, Weselake RJ (2011) sn-Glycerol-3-phosphate acyltransferases in plants. Plant Signal Behav 6:1695–1699

    Article  PubMed  CAS  Google Scholar 

  12. Chen X, Truksa M, Snyder CL, El-Mezawy A, Shah S, Weselake RJ (2011) Three homologous genes encoding sn-glycerol-3-phosphate acyltransferase exhibit different expression patterns and functional divergence in Brassica napus. Plant Physiol 155:851–865

    Article  PubMed  CAS  Google Scholar 

  13. Tomokazu Y, Yukio K, Matsuo U (2008) Cryobehavior of the plasma membrane in protoplasts isolated from cold-acclimated Arabidopsis leaves is related to surface area regulation. Plant Cell Physiol 49:944–957

    Article  Google Scholar 

  14. Nishida I, Murata N (1996) Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol 47:541–568

    Article  PubMed  CAS  Google Scholar 

  15. Yan K, Chen N, Qu YY, Dong XC, Meng QW, Zhao SJ, Yunnan ZY (2008) Over-expression of sweet pepper glycerol-3-phosphate acyltransferase gene enhanced thermotolerance of photosynthetic apparatus in transgenic tobacco. J Int Plant Biol 50:613–621

    Article  CAS  Google Scholar 

  16. Gupta SM, Pandey P, Negi PS, Pande V, Grover A, Patade VY, Ahmed Z (2013) DRE-binding transcription factor gene (LlaDREB1b) is regulated by various abiotic stresses in Lepidium latifolium L. Mol Biol Rep 40:2573–2580

    Article  CAS  Google Scholar 

  17. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 11:4673–4680

    Article  Google Scholar 

  18. Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:W369–W373

    Article  PubMed  CAS  Google Scholar 

  19. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  20. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  21. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation:version II. Plant Mol Biol Rep 1:19–21

    Article  CAS  Google Scholar 

  22. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbour, New York

    Google Scholar 

  23. Lewin TM, Wang P, Coleman RA (1999) Analysis of amino acid motifs diagnostic for the sn-glycerol-3-phosphate acyltransferase reaction. Biochemistry 38:5764–5771

    Article  PubMed  CAS  Google Scholar 

  24. Heath RJ, Rock CO (1998) A conserved histidine is essential for glycerolipid acyltransferase catalysis. J Bacteriol 180:1425–1430

    PubMed  CAS  Google Scholar 

  25. Bhella RS, Mackenzie SL (1994) Nucleotide sequence of a cDNA from Carthamus tinctorius encoding a glycerol-3-phosphate acyltransferase. Plant Physiol 106:1713–1714

    Article  PubMed  CAS  Google Scholar 

  26. Ishizaki O, Nishida I, Agata K, Eguchi G, Murata N (1988) Cloning and nucleotide sequence of cDNA for the plastid glycerol-3-phosphate acyltransferase from squash. FEBS Lett 238:424–430

    Article  PubMed  CAS  Google Scholar 

  27. Tank D, Sang T (2001) Phylogenetic utility of the glycerol-3-phosphate acyltransferase gene: evolution and implications in Paeonia (Paeoniaceae). Mol Phylogenet Evol 19:421–429

    Article  PubMed  CAS  Google Scholar 

  28. Chen N, Guo SJ, Yan K, Dong XC, Meng QW (2005) Cloning and expression analysis of glycerol-3-phosphate acyltransferase gene from sweet pepper. Acta Horticulturae Sinica 32:823–827 (in Chinese)

    CAS  Google Scholar 

  29. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

Download references

Acknowledgments

Defence Research and Development Organisation (DRDO), HQ, New Delhi is duly acknowledged for funding the project and providing Senior Research Fellowship (SRF) to PP and SS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Mohan Gupta.

Additional information

GenBank Accession Numbers: cDNA sequence of LlaGPAT: GenBank Acc. No. JN398166; Genomic sequence of LlaGPAT: GenBank Acc. No. JN882006.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 168 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S.M., Pandey, P., Grover, A. et al. Cloning and characterization of GPAT gene from Lepidium latifolium L.: a step towards translational research in agri-genomics for food and fuel. Mol Biol Rep 40, 4235–4240 (2013). https://doi.org/10.1007/s11033-013-2505-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-013-2505-7

Keywords

Navigation