Skip to main content
Log in

Eosinophil cationic protein enhances stabilization of β-catenin during cardiomyocyte differentiation in P19CL6 embryonal carcinoma cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Prior to gastrulation, the Wnt signaling pathway through stabilized β-catenin enhances the differentiation of mouse ES cell into cardiomyocytes. We have recently shown that cardiomyocyte differentiation is enhanced by eosinophil cationic protein (ECP) through accelerated expression of marker genes of early cardiac differentiation. Furthermore, ECP enhanced the expression of Wnt3a in P19CL6 cells which were stimulated to differentiate into cardiomyocytes by DMSO. Following these findings, we evaluated in this study the potential of ECP to activate the Wnt/β-catenin signaling pathway during cardiomyocyte differentiation. Analysis by real time qPCR revealed that ECP increased the expression of Frizzled genes such as Frizzled-1, -2, -4 and -10 in P19CL6 cells in the presence of DMSO. The increased expression of those Wnt receptors was found to inhibit the phosphorylation of β-catenin resulting in the stabilization and translocation of β-catenin into the nucleus of P19CL6 cells during the early stages of cardiomyocyte differentiation. When assessed for β-catenin/TCF transcriptional activity with a TCF-luciferase (TOP/FOP) assay, ECP enhanced luciferase activity in P19CL6 cells during 48 h after transfection with TOP/FOP flash reporter in a stoichiometric manner. Collectively, this suggests that ECP can activate a canonical Wnt/β-catenin signaling pathway by enhancing the stabilization of β-catenin during cardiomyocyte differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lin L, Cui L, Zhou W, Dufort D, Zhang X, Cai CL, Bu L, Yang L, Martin J, Kemler R, Rosenfeld MG, Chen J, Evans SM (2007) Beta-catenin directly regulates Islet1 expression in cardiovascular progenitors and is required for multiple aspects of cardiogenesis. Proc Natl Acad Sci USA 104:9313–9318

    Article  PubMed  CAS  Google Scholar 

  2. Ueno S, Weidinger G, Osugi T, Kohn AD, Golob JL, Pabon L, Reinecke H, Moon RT, Murry CE (2007) Biphasic role for Wnt/beta-catenin signaling in cardiac specification in zebrafish and embryonic stem cells. Proc Natl Acad Sci USA 104:9685–9690

    Article  PubMed  CAS  Google Scholar 

  3. Hendaoui I, Lavergne E, Lee HS, Hong SH, Kim HZ, Parent C, Heuze-Vourc’h N, Clement B, Musso O (2012) Inhibition of Wnt/beta-catenin signaling by a soluble collagen-derived frizzled domain interacting with Wnt3a and the receptors frizzled 1 and 8. PLoS ONE 7:e30601

    Article  PubMed  CAS  Google Scholar 

  4. Fathke C, Wilson L, Shah K, Kim B, Hocking A, Moon R, Isik F (2006) Wnt signaling induces epithelial differentiation during cutaneous wound healing. BMC Cell Biol 7:4

    Article  PubMed  Google Scholar 

  5. Zhang S, Li Y, Wu Y, Shi K, Bing L, Hao J (2012) Wnt/beta-catenin signaling pathway upregulates c-myc expression to promote cell proliferation of p19 teratocarcinoma cells. Anat Rec (Hoboken) 295(12):2104–2113

    Article  CAS  Google Scholar 

  6. Kashyap MP, Singh AK, Kumar V, Yadav DK, Khan F, Jahan S, Khanna VK, Yadav S, Pant AB (2012) Pkb/Akt1 mediates Wnt/gsk3beta/beta-catenin signaling-induced apoptosis in human cord blood stem cells exposed to organophosphate pesticide monocrotophos. Stem Cells Dev. doi:10.1089/scd.2012.0220

    PubMed  Google Scholar 

  7. Naito M, Omoteyama K, Mikami Y, Takahashi T, Takagi M (2012) Inhibition of Wnt/beta-catenin signaling by dexamethasone promotes adipocyte differentiation in mesenchymal progenitor cells, ROB-C26. Histochem Cell Biol 138(6):833–845

    Article  PubMed  CAS  Google Scholar 

  8. David R, Brenner C, Stieber J, Schwarz F, Brunner S, Vollmer M, Mentele E, Muller-Hocker J, Kitajima S, Lickert H, Rupp R, Franz WM (2008) MesP1 drives vertebrate cardiovascular differentiation through Dkk-1-mediated blockade of Wnt-signalling. Nat Cell Biol 10:338–345

    Article  PubMed  CAS  Google Scholar 

  9. Haq S, Michael A, Andreucci M, Bhattacharya K, Dotto P, Walters B, Woodgett J, Kilter H, Force T (2003) Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci USA 100:4610–4615

    Article  PubMed  CAS  Google Scholar 

  10. Klaus A, Muller M, Schulz H, Saga Y, Martin JF, Birchmeier W (2012) Wnt/beta-catenin and Bmp signals control distinct sets of transcription factors in cardiac progenitor cells. Proc Natl Acad Sci USA 109:10921–10926

    Article  PubMed  CAS  Google Scholar 

  11. Venge P, Bystrom J, Carlson M, Hakansson L, Karawacjzyk M, Peterson C, Seveus L, Trulson A (1999) Eosinophil cationic protein (ECP): molecular and biological properties and the use of ECP as a marker of eosinophil activation in disease. Clin Exp Allergy 29:1172–1186

    Article  PubMed  CAS  Google Scholar 

  12. Fukuda T, Iwata M, Kitazoe M, Maeda T, Salomon D, Hirohata S, Tanizawa K, Kuroda S, Seno M (2009) Human eosinophil cationic protein enhances stress fiber formation in Balb/c 3T3 fibroblasts and differentiation of rat neonatal cardiomyocytes. Growth Factors 27:228–236

    Article  PubMed  CAS  Google Scholar 

  13. Jin G, Mizutani A, Fukuda T, Chen L, Nakanishi K, Yan T, Kudoh T, Hirohata S, Kasai T, Murakami H, Salomon DS, Seno M (2012) Eosinophil cationic protein enhances cardiomyocyte differentiation of P19CL6 embryonal carcinoma cells by stimulating the FGF receptor signaling pathway. Growth Factors 30(5):344–355

    Article  PubMed  CAS  Google Scholar 

  14. Maeda T, Kitazoe M, Tada H, de Llorens R, Salomon DS, Ueda M, Yamada H, Seno M (2002) Growth inhibition of mammalian cells by eosinophil cationic protein. Eur J Biochem 269:307–316

    Article  PubMed  CAS  Google Scholar 

  15. Monzen K, Hiroi Y, Kudoh S, Akazawa H, Oka T, Takimoto E, Hayashi D, Hosoda T, Kawabata M, Miyazono K, Ishii S, Yazaki Y, Nagai R, Komuro I (2001) Smads, TAK1, and their common target ATF-2 play a critical role in cardiomyocyte differentiation. J Cell Biol 153:687–698

    Article  PubMed  CAS  Google Scholar 

  16. Monzen K, Shiojima I, Hiroi Y, Kudoh S, Oka T, Takimoto E, Hayashi D, Hosoda T, Habara-Ohkubo A, Nakaoka T, Fujita T, Yazaki Y, Komuro I (1999) Bone morphogenetic proteins induce cardiomyocyte differentiation through the mitogen-activated protein kinase kinase kinase TAK1 and cardiac transcription factors Csx/Nkx-2.5 and GATA-4. Mol Cell Biol 19:7096–7105

    PubMed  CAS  Google Scholar 

  17. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  PubMed  CAS  Google Scholar 

  18. Kemp CR, Willems E, Wawrzak D, Hendrickx M, Agbor Agbor T, Leyns L (2007) Expression of frizzled5, frizzled7, and frizzled10 during early mouse development and interactions with canonical Wnt signaling. Dev Dyn 236:2011–2019

    Article  PubMed  CAS  Google Scholar 

  19. Kim DJ, Park CS, Yoon JK, Song WK (2008) Differential expression of the Wnt and frizzled genes in Flk1+ cells derived from mouse ES cells. Cell Biochem Funct 26:24–32

    Article  PubMed  CAS  Google Scholar 

  20. Corrigan PM, Dobbin E, Freeburn RW, Wheadon H (2009) Patterns of Wnt/Fzd/LRP gene expression during embryonic hematopoiesis. Stem Cells Dev 18:759–772

    Article  PubMed  CAS  Google Scholar 

  21. Mao CD, Byers SW (2011) Cell-context dependent TCF/LEF expression and function: alternative tales of repression, de-repression and activation potentials. Crit Rev Eukaryot Gene Expr 21:207–236

    Article  PubMed  CAS  Google Scholar 

  22. Katoh M (2007) WNT signaling pathway and stem cell signaling network. Clin Cancer Res 13:4042–4045

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura T, Sano M, Songyang Z, Schneider MD (2003) A Wnt- and beta-catenin-dependent pathway for mammalian cardiac myogenesis. Proc Natl Acad Sci U S A 100:5834–5839

    Article  PubMed  CAS  Google Scholar 

  24. Deb A, Davis BH, Guo J, Ni A, Huang J, Zhang Z, Mu H, Dzau VJ (2008) SFRP2 regulates cardiomyogenic differentiation by inhibiting a positive transcriptional autofeedback loop of Wnt3a. Stem Cells 26:35–44

    Article  PubMed  CAS  Google Scholar 

  25. Flaherty MP, Kamerzell TJ, Dawn B (2012) Wnt signaling and cardiac differentiation. Prog Mol Biol Transl Sci 111:153–174

    Article  PubMed  CAS  Google Scholar 

  26. Gessert S, Kuhl M (2010) The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 107:186–199

    Article  PubMed  CAS  Google Scholar 

  27. Naito AT, Akazawa H, Takano H, Minamino T, Nagai T, Aburatani H, Komuro I (2005) Phosphatidylinositol 3-kinase-Akt pathway plays a critical role in early cardiomyogenesis by regulating canonical Wnt signaling. Circ Res 97:144–151

    Article  PubMed  CAS  Google Scholar 

  28. Lian X, Hsiao C, Wilson G, Zhu K, Hazeltine LB, Azarin SM, Raval KK, Zhang J, Kamp TJ, Palecek SP (2012) Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc Natl Acad Sci USA 109:E1848–E1857

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the Ministry of Education, Culture, Sports, Science and Technology Grant-in-Aid for Scientific Research, by Japan Science and Technology Agency (JST), and by Chugoku Industrial Innovation Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaharu Seno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, G., Mizutani, A., Fukuda, T. et al. Eosinophil cationic protein enhances stabilization of β-catenin during cardiomyocyte differentiation in P19CL6 embryonal carcinoma cells. Mol Biol Rep 40, 3165–3171 (2013). https://doi.org/10.1007/s11033-012-2390-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2390-5

Keywords

Navigation