Advertisement

Molecular Biology Reports

, Volume 40, Issue 3, pp 2491–2501 | Cite as

Chronobiology in mammalian health

  • Zhihua LiuEmail author
  • Guiyan Chu
Article

Abstract

Circadian rhythms are daily cycles of physiology and behavior that are driven by an endogenous oscillator with a period of approximately one day. In mammals, the hypothalamic suprachiasmatic nuclei are our principal circadian oscillators which influences peripheral tissue clocks via endocrine, autonomic and behavioral cues, and other brain regions and most peripheral tissues contain circadian clocks as well. The circadian molecular machinery comprises a group of circadian genes, namely Clock, Bmal1, Per1, Per2, Per3, Cry1 and Cry2. These circadian genes drive endogenous oscillations which promote rhythmically expression of downstream genes and thereby physiological and behavioral processes. Disruptions in circadian homeostasis have pronounced impact on physiological functioning, overall health and disease susceptibility. This review introduces the general profile of circadian gene expression and tissue-specific circadian regulation, highlights the connection between the circadian rhythms and physiological processes, and discusses the role of circadian rhythms in human disease.

Keywords

Circadian rhythm Physiology Peripheral tissue Disease 

Notes

Acknowledgments

This work was supported by National Natural Science Foundation of China (81102746, 81100077, 31201768), Beijing Natural Science Foundation (5113033), Scientific Research Foundation of the State Human Resource Ministry and the Education Ministry for Returned Chinese Scholars, New Star Project of Peking Union Medical College, Outstanding Youth Scrolling Foundation of Peking Union Medical College, Basic Scientific Research Operation Cost of State-Leveled Public Welfare Scientific Research Courtyard (YZ-12-15), Special Foundation of China Postdoctoral Science (2012T50067), China Postdoctoral Science Foundation (2011M500014, 2012M510011), the Research Fund for the Doctoral Program of Higher Education (20111106120028), “Major Drug Discovery” major science and technology research “12nd Five-Year Plan” (2012ZX09301-002-001-025), China Medical Board of New York (A2009001), Program for New Century Excellent Talents in University (NCET) granted to Zhihua Liu.

References

  1. 1.
    Aschoff J (1984) Circadian timing. Ann N Y Acad Sci 423:442–468PubMedCrossRefGoogle Scholar
  2. 2.
    Pittendrigh CS (1993) Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol 55:16–54PubMedCrossRefGoogle Scholar
  3. 3.
    Schibler U, Sassone-Corsi P (2002) A web of circadian pacemakers. Cell 111:919–922PubMedCrossRefGoogle Scholar
  4. 4.
    Hastings MH, Reddy AB, Maywood ES (2003) A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci 4:649–661PubMedCrossRefGoogle Scholar
  5. 5.
    Yamamoto T, Nakahata Y, Soma H, Akashi M, Mamine T, Takumi T (2004) Transcriptional oscillation of canonical clock genes in mouse peripheral tissues. BMC Mol Biol 5:18PubMedCrossRefGoogle Scholar
  6. 6.
    Akhtar RA et al (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr Biol 12:540–550PubMedCrossRefGoogle Scholar
  7. 7.
    Ueda HR et al (2002) A transcription factor response element for gene expression during circadian night. Nature 418:534–539PubMedCrossRefGoogle Scholar
  8. 8.
    Kita Y, Shiozawa M, Jin W, Majewski RR, Besharse JC, Greene AS, Jacob HJ (2002) Implications of circadian gene expression in kidney, liver and the effects of fasting on pharmacogenomic studies. Pharmacogenetics 12:55–65PubMedCrossRefGoogle Scholar
  9. 9.
    Panda S et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320PubMedCrossRefGoogle Scholar
  10. 10.
    Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ (2002) Extensive and divergent circadian gene expression in liver and heart. Nature 417:78–83PubMedCrossRefGoogle Scholar
  11. 11.
    Grundschober C, Delaunay F, Puhlhofer A, Triqueneaux G, Laudet V, Bartfai T, Nef P (2001) Circadian regulation of diverse gene products revealed by mRNA expression profiling of synchronized fibroblasts. J Biol Chem 276:46751–46758PubMedCrossRefGoogle Scholar
  12. 12.
    Duffield GE, Best JD, Meurers BH, Bittner A, Loros JJ, Dunlap JC (2002) Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12:551–557PubMedCrossRefGoogle Scholar
  13. 13.
    Rajaratnam SM, Arendt J (2001) Health in a 24-h society. Lancet 358:999–1005PubMedCrossRefGoogle Scholar
  14. 14.
    Knutsson A (2003) Health disorders of shift workers. Occup Med (Lond) 53:103–108CrossRefGoogle Scholar
  15. 15.
    Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556PubMedCrossRefGoogle Scholar
  16. 16.
    Ko CH, Takahashi JS (2006). Molecular components of the mammalian circadian clock. Hum Mol Genet 15 Spec No 2, R271–7Google Scholar
  17. 17.
    Wijnen H, Young MW (2006) Interplay of circadian clocks and metabolic rhythms. Annu Rev Genet 40:409–448PubMedCrossRefGoogle Scholar
  18. 18.
    Fu L, Lee CC (2003) The circadian clock: pacemaker and tumour suppressor. Nat Rev Cancer 3:350–361PubMedCrossRefGoogle Scholar
  19. 19.
    Sato TK et al (2004) A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43:527–537PubMedCrossRefGoogle Scholar
  20. 20.
    Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192PubMedCrossRefGoogle Scholar
  21. 21.
    Yoo SH et al (2005) A noncanonical E-box enhancer drives mouse period2 circadian oscillations in vivo. Proc Natl Acad Sci USA 102:2608–2613PubMedCrossRefGoogle Scholar
  22. 22.
    Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H (2001) Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev 15:995–1006PubMedCrossRefGoogle Scholar
  23. 23.
    Harding HP, Lazar MA (1993) The orphan receptor Rev-ErbA alpha activates transcription via a novel response element. Mol Cell Biol 13:3113–3121PubMedGoogle Scholar
  24. 24.
    Kako K, Banasik M, Lee K, Ishida N (1997) Regulation of cAMP response element binding protein (CREB) binding in the mammalian clock pacemaker by light but not a circadian clock. Brain Res Mol Brain Res 44:39–45PubMedCrossRefGoogle Scholar
  25. 25.
    Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68PubMedCrossRefGoogle Scholar
  26. 26.
    Ripperger JA, Shearman LP, Reppert SM, Schibler U (2000) CLOCK, an essential pacemaker component, controls expression of the circadian transcription factor DBP. Genes Dev 14:679–689PubMedGoogle Scholar
  27. 27.
    Etchegaray JP, Lee C, Wade PA, Reppert SM (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177–182PubMedCrossRefGoogle Scholar
  28. 28.
    Kassam A, Capone JP, Rachubinski RA (1999) Orphan nuclear hormone receptor RevErbalpha modulates expression from the promoter of the hydratase-dehydrogenase gene by inhibiting peroxisome proliferator-activated receptor alpha-dependent transactivation. J Biol Chem 274:22895–22900PubMedCrossRefGoogle Scholar
  29. 29.
    Ripperger JA, Schibler U (2006) Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat Genet 38:369–374PubMedCrossRefGoogle Scholar
  30. 30.
    Vitaterna MH et al (1999) Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad Sci USA 96:12114–12119PubMedCrossRefGoogle Scholar
  31. 31.
    Okamura H, Miyake S, Sumi Y, Yamaguchi S, Yasui A, Muijtjens M, Hoeijmakers JH, van der Horst GT (1999) Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science 286:2531–2534PubMedCrossRefGoogle Scholar
  32. 32.
    Shearman LP et al (2000) Interacting molecular loops in the mammalian circadian clock. Science 288:1013–1019PubMedCrossRefGoogle Scholar
  33. 33.
    Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS (2000) Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–492PubMedCrossRefGoogle Scholar
  34. 34.
    Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U (2002) The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110:251–260PubMedCrossRefGoogle Scholar
  35. 35.
    Akashi M, Takumi T (2005) The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat Struct Mol Biol 12:441–448PubMedCrossRefGoogle Scholar
  36. 36.
    Molyneux PC, Dahlgren MK, Harrington ME (2008) Circadian entrainment aftereffects in suprachiasmatic nuclei and peripheral tissues in vitro. Brain Res 1228:127–134PubMedCrossRefGoogle Scholar
  37. 37.
    Munoz E, Brewer M, Baler R (2002) Circadian transcription. Thinking outside the E-Box. J Biol Chem 277:36009–36017PubMedCrossRefGoogle Scholar
  38. 38.
    Yasuo S, Watanabe M, Okabayashi N, Ebihara S, Yoshimura T (2003) Circadian clock genes and photoperiodism: comprehensive analysis of clock gene expression in the mediobasal hypothalamus, the suprachiasmatic nucleus, and the pineal gland of Japanese Quail under various light schedules. Endocrinology 144:3742–3748PubMedCrossRefGoogle Scholar
  39. 39.
    Plautz JD, Kaneko M, Hall JC, Kay SA (1997) Independent photoreceptive circadian clocks throughout Drosophila. Science 278:1632–1635PubMedCrossRefGoogle Scholar
  40. 40.
    Yamazaki S et al (2000) Resetting central and peripheral circadian oscillators in transgenic rats. Science 288:682–685PubMedCrossRefGoogle Scholar
  41. 41.
    Balsalobre A, Damiola F, Schibler U (1998) A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937PubMedCrossRefGoogle Scholar
  42. 42.
    Yagita K, Tamanini F, van Der Horst GT, Okamura H (2001) Molecular mechanisms of the biological clock in cultured fibroblasts. Science 292:278–281PubMedCrossRefGoogle Scholar
  43. 43.
    Akashi M, Nishida E (2000) Involvement of the MAP kinase cascade in resetting of the mammalian circadian clock. Genes Dev 14:645–649PubMedGoogle Scholar
  44. 44.
    Vollmers C, Panda S, DiTacchio L (2008) A high-throughput assay for siRNA-based circadian screens in human U2OS cells. PLoS ONE 3:e3457PubMedCrossRefGoogle Scholar
  45. 45.
    Reppert SM, Weaver DR (2002) Coordination of circadian timing in mammals. Nature 418:935–941PubMedCrossRefGoogle Scholar
  46. 46.
    Welsh DK, Logothetis DE, Meister M, Reppert SM (1995) Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14:697–706PubMedCrossRefGoogle Scholar
  47. 47.
    McNamara P, Seo SB, Rudic RD, Sehgal A, Chakravarti D, FitzGerald GA (2001) Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: a humoral mechanism to reset a peripheral clock. Cell 105:877–889PubMedCrossRefGoogle Scholar
  48. 48.
    Schoenhard JA, Eren M, Johnson CH, Vaughan DE (2002) Alternative splicing yields novel BMAL2 variants: tissue distribution and functional characterization. Am J Physiol Cell Physiol 283:C103–C114PubMedGoogle Scholar
  49. 49.
    Nonaka H et al (2001) Angiotensin II induces circadian gene expression of clock genes in cultured vascular smooth muscle cells. Circulation 104:1746–1748PubMedCrossRefGoogle Scholar
  50. 50.
    Noshiro M, Furukawa M, Honma S, Kawamoto T, Hamada T, Honma K, Kato Y (2005) Tissue-specific disruption of rhythmic expression of Dec1 and Dec2 in clock mutant mice. J Biol Rhythms 20:404–418PubMedCrossRefGoogle Scholar
  51. 51.
    King VM, Chahad-Ehlers S, Shen S, Harmar AJ, Maywood ES, Hastings MH (2003) A hVIPR transgene as a novel tool for the analysis of circadian function in the mouse suprachiasmatic nucleus. Eur J Neurosci 17:822–832Google Scholar
  52. 52.
    Sujino M, Masumoto KH, Yamaguchi S, van der Horst GT, Okamura H, Inouye ST (2003) Suprachiasmatic nucleus grafts restore circadian behavioral rhythms of genetically arrhythmic mice. Curr Biol 13:664–668PubMedCrossRefGoogle Scholar
  53. 53.
    Lincoln G, Messager S, Andersson H, Hazlerigg D (2002) Temporal expression of seven clock genes in the suprachiasmatic nucleus and the pars tuberalis of the sheep: evidence for an internal coincidence timer. Proc Natl Acad Sci USA 99:13890–13895PubMedCrossRefGoogle Scholar
  54. 54.
    Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U (2000) Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347PubMedCrossRefGoogle Scholar
  55. 55.
    Le Minh N, Damiola F, Tronche F, Schutz G, Schibler U (2001) Glucocorticoid hormones inhibit food-induced phase-shifting of peripheral circadian oscillators. EMBO J 20:7128–7136PubMedCrossRefGoogle Scholar
  56. 56.
    Oishi K et al (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278:41519–41527PubMedCrossRefGoogle Scholar
  57. 57.
    Karman BN, Tischkau SA (2006) Circadian clock gene expression in the ovary: effects of luteinizing hormone. Biol Reprod 75:624–632PubMedCrossRefGoogle Scholar
  58. 58.
    Chu G et al (2011) Alterations of circadian clockworks during differentiation and apoptosis of rat ovarian cells. Chronobiol Int 28:477–487PubMedCrossRefGoogle Scholar
  59. 59.
    Chu G, Misawa I, Chen H, Yamauchi N, Shigeyoshi Y, Hashimoto S, Hattori MA (2012) Contribution of FSH and triiodothyronine to the development of circadian clocks during granulosa cell maturation. Am J Physiol Endocrinol Metab 302:E645–E653PubMedCrossRefGoogle Scholar
  60. 60.
    Shimizu T, Hirai Y, Murayama C, Miyamoto A, Miyazaki H, Miyazaki K (2011) Circadian clock genes Per2 and clock regulate steroid production, cell proliferation, and luteinizing hormone receptor transcription in ovarian granulosa cells. Biochem Biophys Res Commun 412:132–135PubMedGoogle Scholar
  61. 61.
    Reiter RJ (1991) Melatonin: the chemical expression of darkness. Mol Cell Endocrinol 79:C153–C158PubMedCrossRefGoogle Scholar
  62. 62.
    Jung B, Ahmad N (2006) Melatonin in cancer management: progress and promise. Cancer Res 66:9789–9793PubMedCrossRefGoogle Scholar
  63. 63.
    Jung-Hynes B, Huang W, Reiter RJ, Ahmad N (2010) Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells. J Pineal Res 49:60–68PubMedGoogle Scholar
  64. 64.
    Park JW, Hwang MS, Suh SI, Baek WK (2009) Melatonin down-regulates HIF-1 alpha expression through inhibition of protein translation in prostate cancer cells. J Pineal Res 46:415–421PubMedCrossRefGoogle Scholar
  65. 65.
    Joo SS, Yoo YM (2009) Melatonin induces apoptotic death in LNCaP cells via p38 and JNK pathways: therapeutic implications for prostate cancer. J Pineal Res 47:8–14PubMedCrossRefGoogle Scholar
  66. 66.
    Jung-Hynes B, Ahmad N (2009) SIRT1 controls circadian clock circuitry and promotes cell survival: a connection with age-related neoplasms. FASEB J 23:2803–2809PubMedCrossRefGoogle Scholar
  67. 67.
    Cao Q, Gery S, Dashti A, Yin D, Zhou Y, Gu J, Koeffler HP (2009) A role for the clock gene per1 in prostate cancer. Cancer Res 69:7619–7625PubMedCrossRefGoogle Scholar
  68. 68.
    Muhlbauer E, Wolgast S, Finckh U, Peschke D, Peschke E (2004) Indication of circadian oscillations in the rat pancreas. FEBS Lett 564:91–96PubMedCrossRefGoogle Scholar
  69. 69.
    Sadacca LA, Lamia KA, deLemos AS, Blum B, Weitz CJ (2011) An intrinsic circadian clock of the pancreas is required for normal insulin release and glucose homeostasis in mice. Diabetologia 54:120–124PubMedCrossRefGoogle Scholar
  70. 70.
    Peschke E, Peschke D (1998) Evidence for a circadian rhythm of insulin release from perifused rat pancreatic islets. Diabetologia 41:1085–1092PubMedCrossRefGoogle Scholar
  71. 71.
    Nakahira Y, Katayama M, Miyashita H, Kutsuna S, Iwasaki H, Oyama T, Kondo T (2004) Global gene repression by KaiC as a master process of prokaryotic circadian system. Proc Natl Acad Sci USA 101:881–885PubMedCrossRefGoogle Scholar
  72. 72.
    Oklejewicz M, Hut RA, Daan S, Loudon AS, Stirland AJ (1997) Metabolic rate changes proportionally to circadian frequency in tau mutant Syrian hamsters. J Biol Rhythms 12:413–422PubMedGoogle Scholar
  73. 73.
    Lucas RJ, Stirland JA, Mohammad YN, Loudon AS (2000) Postnatal growth rate and gonadal development in circadian tau mutant hamsters reared in constant dim red light. J Reprod Fertil 118:327–330PubMedCrossRefGoogle Scholar
  74. 74.
    Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M (2001) Entrainment of the circadian clock in the liver by feeding. Science 291:490–493PubMedCrossRefGoogle Scholar
  75. 75.
    Kitamura Y, Accili D (2004) New insights into the integrated physiology of insulin action. Rev Endocr Metab Disord 5:143–149PubMedCrossRefGoogle Scholar
  76. 76.
    Durgan DJ et al (2005) The intrinsic circadian clock within the cardiomyocyte. Am J Physiol Heart Circ Physiol 289:H1530–H1541PubMedCrossRefGoogle Scholar
  77. 77.
    Young ME (2006) The circadian clock within the heart: potential influence on myocardial gene expression, metabolism, and function. Am J Physiol Heart Circ Physiol 290:H1–H16PubMedCrossRefGoogle Scholar
  78. 78.
    Hunt T, Sassone-Corsi P (2007) Riding tandem: circadian clocks and the cell cycle. Cell 129:461–464PubMedCrossRefGoogle Scholar
  79. 79.
    Matsuo T, Yamaguchi S, Mitsui S, Emi A, Shimoda F, Okamura H (2003) Control mechanism of the circadian clock for timing of cell division in vivo. Science 302:255–259PubMedCrossRefGoogle Scholar
  80. 80.
    Hirayama J, Cardone L, Doi M, Sassone-Corsi P (2005) Common pathways in circadian and cell cycle clocks: light-dependent activation of Fos/AP-1 in zebrafish controls CRY-1a and WEE-1. Proc Natl Acad Sci USA 102:10194–10199PubMedCrossRefGoogle Scholar
  81. 81.
    Fu L, Pelicano H, Liu J, Huang P, Lee C (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50PubMedCrossRefGoogle Scholar
  82. 82.
    Gery S, Komatsu N, Baldjyan L, Yu A, Koo D, Koeffler HP (2006) The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22:375–382PubMedCrossRefGoogle Scholar
  83. 83.
    Pace-Schott EF, Hobson JA (2002) The neurobiology of sleep: genetics, cellular physiology and subcortical networks. Nat Rev Neurosci 3:591–605PubMedGoogle Scholar
  84. 84.
    Hastings MH (1991) Neuroendocrine rhythms. Pharmacol Ther 50:35–71PubMedCrossRefGoogle Scholar
  85. 85.
    Ralph MR, Menaker M (1988) A mutation of the circadian system in golden hamsters. Science 241:1225–1227PubMedCrossRefGoogle Scholar
  86. 86.
    Cartwright R (2000) Sleep-related violence: does the polysomnogram help establish the diagnosis? Sleep Med 1:331–335PubMedCrossRefGoogle Scholar
  87. 87.
    Hamblen-Coyle MJ, Wheeler DA, Rutila JE, Rosbash M, Hall JC (1992) Behavior of period-altered circadian rhythm mutants of Drosophila in light: dark cycles (Diptera: Drosophilidae). J insect behav 5:417–446CrossRefGoogle Scholar
  88. 88.
    Palmer J, Udry J, Morris N (1982) Diurnal and weekly, but no lunar rhythms in humans copulation. Hum Biol 54:111PubMedGoogle Scholar
  89. 89.
    Refinetti R (2005) Time for sex: nycthemeral distribution of human sexual behavior. J circadian rhythms 3:4PubMedCrossRefGoogle Scholar
  90. 90.
    Everett JW, Sawyer CH (1950) A 24-hour periodicity in the “LH-release apparatus” of female rats, disclosed by barbiturate sedation. Endocrinology 47:198–218PubMedCrossRefGoogle Scholar
  91. 91.
    Chappell PE, White RS, Mellon PL (2003) Circadian gene expression regulates pulsatile gonadotropin-releasing hormone (GnRH) secretory patterns in the hypothalamic GnRH-secreting GT1-7 cell line. J Neurosci 23:11202–11213PubMedGoogle Scholar
  92. 92.
    Gillespie JM, Chan BP, Roy D, Cai F, Belsham DD (2003) Expression of circadian rhythm genes in gonadotropin-releasing hormone-secreting GT1-7 neurons. Endocrinology 144:5285–5292PubMedCrossRefGoogle Scholar
  93. 93.
    Olcese J, Domagalski R, Bednorz A, Weaver DR, Urbanski HF, Reuss S, Middendorff R (2003) Expression and regulation of mPer1 in immortalized GnRH neurons. NeuroReport 14:613–618PubMedCrossRefGoogle Scholar
  94. 94.
    Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131PubMedCrossRefGoogle Scholar
  95. 95.
    Johnson MH, Lim A, Fernando D, Day ML (2002) Circadian clockwork genes are expressed in the reproductive tract and conceptus of the early pregnant mouse. Reprod Biomed Online 4:140–145PubMedCrossRefGoogle Scholar
  96. 96.
    Kennaway DJ, Varcoe TJ, Mau VJ (2003) Rhythmic expression of clock and clock-controlled genes in the rat oviduct. Mol Hum Reprod 9:503–507PubMedCrossRefGoogle Scholar
  97. 97.
    Horard B, Rayet B, Triqueneaux G, Laudet V, Delaunay F, Vanacker JM (2004) Expression of the orphan nuclear receptor ERRalpha is under circadian regulation in estrogen-responsive tissues. J Mol Endocrinol 33:87–97PubMedCrossRefGoogle Scholar
  98. 98.
    Miller BH, Olson SL, Turek FW, Levine JE, Horton TH, Takahashi JS (2004) Circadian clock mutation disrupts estrous cyclicity and maintenance of pregnancy. Curr Biol 14:1367–1373PubMedCrossRefGoogle Scholar
  99. 99.
    Herzog ED, Grace MS, Harrer C, Williamson J, Shinohara K, Block GD (2000) The role of clock in the developmental expression of neuropeptides in the suprachiasmatic nucleus. J Comp Neurol 424:86–98PubMedCrossRefGoogle Scholar
  100. 100.
    Dickmeis T, Lahiri K, Nica G, Vallone D, Santoriello C, Neumann CJ, Hammerschmidt M, Foulkes NS (2007) Glucocorticoids play a key role in circadian cell cycle rhythms. PLoS Biol 5:e78PubMedCrossRefGoogle Scholar
  101. 101.
    Chrousos GP (1998) Ultradian, circadian, and stress-related hypothalamic-pituitary-adrenal axis activity: a dynamic digital-to-analog modulation. Endocrinology 139:437–440PubMedCrossRefGoogle Scholar
  102. 102.
    Haus E (2007) Chronobiology in the endocrine system. Adv Drug Deliv Rev 59:985–1014PubMedCrossRefGoogle Scholar
  103. 103.
    Lightman SL et al (2008) The significance of glucocorticoid pulsatility. Eur J Pharmacol 583:255–262PubMedCrossRefGoogle Scholar
  104. 104.
    Conlon M, Lightfoot N, Kreiger N (2007) Rotating shift work and risk of prostate cancer. Epidemiology 18:182–183PubMedCrossRefGoogle Scholar
  105. 105.
    Morikawa Y et al (2005) Shift work and the risk of diabetes mellitus among Japanese male factory workers. Scand J Work Environ Health 31:179–183PubMedCrossRefGoogle Scholar
  106. 106.
    Koda S et al (2000) Analyses of work-relatedness of health problems among truck drivers by questionnaire survey. Sangyo Eiseigaku Zasshi 42:6–16PubMedGoogle Scholar
  107. 107.
    Kivimaki M, Virtanen M, Elovainio M, Vaananen A, Keltikangas-Jarvinen L, Vahtera J (2006) Prevalent cardiovascular disease, risk factors and selection out of shift work. Scand J Work Environ Health 32:204–208PubMedCrossRefGoogle Scholar
  108. 108.
    Bildt C, Michelsen H (2002) Gender differences in the effects from working conditions on mental health: a 4-year follow-up. Intern Arch Occup Environ Health 75:252–258CrossRefGoogle Scholar
  109. 109.
    Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, Mignot E (1998) A clock polymorphism associated with human diurnal preference. Sleep 21:569–576PubMedGoogle Scholar
  110. 110.
    Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043PubMedCrossRefGoogle Scholar
  111. 111.
    Ebisawa T et al (2001) Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep 2:342–346PubMedCrossRefGoogle Scholar
  112. 112.
    Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, von Schantz M (2003) A length polymorphism in the circadian clock gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26:413–415PubMedGoogle Scholar
  113. 113.
    Cohen MC, Rohtla KM, Lavery CE, Muller JE, Mittleman MA (1997) Meta-analysis of the morning excess of acute myocardial infarction and sudden cardiac death. Am J Cardiol 79:1512–1516PubMedCrossRefGoogle Scholar
  114. 114.
    Goldberg RJ, Brady P, Muller JE, Chen ZY, de Groot M, Zonneveld P, Dalen JE (1990) Time of onset of symptoms of acute myocardial infarction. Am J Cardiol 66:140–144PubMedCrossRefGoogle Scholar
  115. 115.
    Lemmer B (1996) Chronopharmacology of hypertension. Ann N Y Acad Sci 783:242–253PubMedCrossRefGoogle Scholar
  116. 116.
    Tofler GH et al (1987) Concurrent morning increase in platelet aggregability and the risk of myocardial infarction and sudden cardiac death. N Engl J Med 316:1514–1518PubMedCrossRefGoogle Scholar
  117. 117.
    Decousus HA, Croze M, Levi FA, Jaubert JG, Perpoint BM, De Bonadona JF, Reinberg A, Queneau PM (1985) Circadian changes in anticoagulant effect of heparin infused at a constant rate. Br Med J (Clin Res Ed) 290:341–344CrossRefGoogle Scholar
  118. 118.
    Krulder JW, Van den Besselaar AM, Van der Meer FJ, Meinders AE, Briet E (1994) Diurnal changes in heparin effect during continuous constant-rate infusion. A study in nine patients with venous thromboembolism. J Intern Med 235:411–417PubMedCrossRefGoogle Scholar
  119. 119.
    Braunwald E (1995) Morning resistance to thrombolytic therapy. Circulation 91:1604–1606PubMedCrossRefGoogle Scholar
  120. 120.
    Kurnik PB (1995) Circadian variation in the efficacy of tissue-type plasminogen activator. Circulation 91:1341–1346PubMedCrossRefGoogle Scholar
  121. 121.
    Bridges A, McLaren M, Saniabadi A, Fisher T, Belch J (1991) Circadian variation of endothelial cell function, red blood cell deformability and dehydro-thromboxane B2 in healthy volunteers. Blood coagul & fibrinolysis: an international journal in haemostasis and thrombosis 2:447CrossRefGoogle Scholar
  122. 122.
    Maemura K, de la Monte SM, Chin MT, Layne MD, Hsieh CM, Yet SF, Perrella MA, Lee ME (2000) CLIF, a novel cycle-like factor, regulates the circadian oscillation of plasminogen activator inhibitor-1 gene expression. J Biol Chem 275:36847–36851PubMedCrossRefGoogle Scholar
  123. 123.
    Young ME, Razeghi P, Taegtmeyer H (2001) Clock genes in the heart: characterization and attenuation with hypertrophy. Circ Res 88:1142–1150PubMedCrossRefGoogle Scholar
  124. 124.
    Liu ZH, Sun X (2008) Coronavirus phylogeny based on base–base correlation. Intern J Bioinform Res Appl 4(2):211–220CrossRefGoogle Scholar
  125. 125.
    Liu ZH, Jiao D, Sun X (2005) Classifying genomic sequences by sequence feature analysis. Genomics Proteomics Bioinform 3(4):201–205Google Scholar
  126. 126.
    Liu ZH, Meng J, Sun X (2008) A novel feature-based method for whole genome phylogenetic analysis without alignment: application to HEV genotyping and subtyping. Biochem Biophys Res Commun 368(2):223–230PubMedCrossRefGoogle Scholar
  127. 127.
    Liu ZH, Chen SL (2010) ER regulates an evolutionarily conserved apoptosis pathway. Biochem Biophys Res Commun 400(1):34–38PubMedCrossRefGoogle Scholar
  128. 128.
    Liu ZH, Yang D, Xie P, Ren GM, Sun GB et al (2012) MiR-106b and MiR-15b modulate apoptosis and angiogenesis in myocardial infarction. Cell Physiol Biochem 29:851–862PubMedGoogle Scholar
  129. 129.
    Liu ZH, Zeng X, Yang D, Ren GM, Chu GY et al (2012) Identification of medicinal vines by ITS2 using complementary discrimination methods. J Ethnopharmacol 141:242–249PubMedCrossRefGoogle Scholar
  130. 130.
    Liu ZH, Zeng X, Yang D, Chu GY, Yuan ZR et al (2012) Applying DNA barcodes for identification of plant species in the family Araliaceae. Gene 499:76–80PubMedCrossRefGoogle Scholar
  131. 131.
    Jiang C, Liu ZH, Li L, Lin BB, Yan F, Qin MJ (2012) A new eudesmane sesquiterpene glycosides from Liriope muscari. J Asian Nat Prod Res 14(5):491–495PubMedCrossRefGoogle Scholar
  132. 132.
    Zeng X, Yuan ZR, Tong X, Li QS, Gao WW et al (2012) Phylogenetic study of Oryzoideae species and related taxa of the Poaceae based on atpB-rbcL and ndhF DNA sequences. Mol Biol Rep 39(5):5737–5744PubMedCrossRefGoogle Scholar
  133. 133.
    Yuan ZR, Chu GY, Dan Y, Li J, Zhang LP et al (2012) RCA1: a new candidate gene for bovine mastitis and its association analysis between single nucleotide polymorphisms and milk somatic cell score. Mol Biol Rep 39(6):6625–6631PubMedCrossRefGoogle Scholar
  134. 134.
    Yang D, Xie P, Liu ZH (2012) Ischemia/reperfusion-induced MKP-3 impairs endothelial NO formation via inactivation of ERK1/2 pathway. PLoS ONE 7(7):e42076PubMedCrossRefGoogle Scholar
  135. 135.
    Hu RF, Zeng X, Gao WW, Wang Q, Liu ZH (2012) HRAS: a webserver for early warning of human health risk brought by aflatoxin. Mol Biol Rep. doi: 10.1007/s11033-012-2160-4
  136. 136.
    Ren GM, Liu ZH (2012) NetCAD: a network analysis tool for coronary artery disease associated PPI network. Bioinformatics. doi: 10.1093/bioinformatics/bts666
  137. 137.
    Filipski E, King VM, Li X, Granda TG, Mormont MC, Claustrat B, Hastings MH, Levi F (2003) Disruption of circadian coordination accelerates malignant growth in mice. Pathol Biol (Paris) 51:216–219CrossRefGoogle Scholar
  138. 138.
    Jones CR et al (1999) Familial advanced sleep-phase syndrome: a short-period circadian rhythm variant in humans. Nat Med 5:1062–1065PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Bioinformatics and Computational Biology, Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina

Personalised recommendations