Skip to main content
Log in

SENP2 regulates MEF2A de-SUMOylation in an activity dependent manner

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

SUMOylation has been shown to exert non-negligible influence on transcriptional factors and regulate genes expression by attuning their transcriptional activity. Myocyte-specific enhancer factor-2(MEF2) is a family of transcription factor and play a critical role in embryonic development. The transcriptional activity of MEF2A is highly repressed by SUMOylation in an activity-dependent manner. However, the enzyme that poses de-SUMOylation activity towards MEF2A is still not identified. Here we reported that SENP2 was identified as the major transcriptional dominator and de-SUMOylation enzyme of MEF2A by combining both unbiased shRNA screen and in vivo SUMOylation assays. The SUMOylated form of MEF2A was readily detectable in either SENP2 knockdown cells or knockout embryos. SENP2 markedly enhanced the transcription of MEF2A through directly de-SUMOylation. Moreover, SENP2 protein was accumulated in response to activity-dependent stimuli which in turn mediated activity dependent-regulation of MEF2A de-SUMOylation. Our data clearly show that SENP2 plays an important role in determining the dynamics and functional outcome of MEF2A SUMOylation and transcriptional activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yeh ET (2009) SUMOylation and De-SUMOylation: wrestling with life’s processes. J Biol Chem 284(13):8223–8227

    Article  PubMed  CAS  Google Scholar 

  2. Di Bacco A, Gill G (2006) SUMO-specific proteases and the cell cycle. An essential role for SENP5 in cell proliferation. Cell Cycle 5(20):2310–2313

    Article  PubMed  Google Scholar 

  3. Gong L, Yeh ET (2006) Characterization of a family of nucleolar SUMO-specific proteases with preference for SUMO-2 or SUMO-3. J Biol Chem 281(23):15869–15877

    Article  PubMed  CAS  Google Scholar 

  4. Hay RT (2007) SUMO-specific proteases: a twist in the tail. Trends Cell Biol 17(8):370–376

    Article  PubMed  CAS  Google Scholar 

  5. Mukhopadhyay D, Dasso M (2007) Modification in reverse: the SUMO proteases. Trends Biochem Sci 32(6):286–295

    Article  PubMed  CAS  Google Scholar 

  6. Riquelme C, Barthel KK, Liu X (2006) SUMO-1 modification of MEF2A regulates its transcriptional activity. J Cell Mol Med 10(1):132–144

    Article  PubMed  CAS  Google Scholar 

  7. McKinsey TA, Zhang CL, Olson EN (2002) MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem Sci 27(1):40–47

    Article  PubMed  CAS  Google Scholar 

  8. Lin X, Shah S, Bulleit RF (1996) The expression of MEF2 genes is implicated in CNS neuronal differentiation. Brain Res Mol Brain Res 42(2):307–316

    Article  PubMed  CAS  Google Scholar 

  9. Lyons GE et al (1995) Expression of mef2 genes in the mouse central nervous system suggests a role in neuronal maturation. J Neurosci 15(8):5727–5738

    PubMed  CAS  Google Scholar 

  10. Shalizi A et al (2006) A calcium-regulated MEF2 sumoylation switch controls postsynaptic differentiation. Science 311(5763):1012–1017

    Article  PubMed  CAS  Google Scholar 

  11. Flavell SW et al (2006) Activity-dependent regulation of MEF2 transcription factors suppresses excitatory synapse number. Science 311(5763):1008–1012

    Article  PubMed  CAS  Google Scholar 

  12. PIASx is a MEF2 SUMO E3 ligase that promotes postsynaptic dendritic morphogenesis. J Neurosci 2007

  13. Lu H et al (2009) The activity-dependent stimuli increase SUMO modification in SHSY5Y cells. Biochem Biophys Res Commun 390(3):872–876

    Article  PubMed  CAS  Google Scholar 

  14. Cheng J et al (2004) SENP1 enhances androgen receptor-dependent transcription through desumoylation of histone deacetylase 1. Mol Cell Biol 24(13):6021–6028

    Article  PubMed  CAS  Google Scholar 

  15. Kang X et al (2010) SUMO-specific protease 2 is essential for suppression of polycomb group protein-mediated gene silencing during embryonic development. Mol Cell 38(2):191–201

    Article  PubMed  CAS  Google Scholar 

  16. Cheng J et al (2007) SUMO-specific protease 1 is essential for stabilization of HIF1alpha during hypoxia. Cell 131(3):584–595

    Article  PubMed  CAS  Google Scholar 

  17. Guo B et al (2007) Signalling pathways and the regulation of SUMO modification. Biochem Soc Trans 35(Pt 6):1414–1418

    Article  PubMed  CAS  Google Scholar 

  18. Liu B, Shuai K (2008) Regulation of the sumoylation system in gene expression. Curr Opin Cell Biol 20(3):288–293

    Article  PubMed  CAS  Google Scholar 

  19. Kim JH, Baek SH (2009) Emerging roles of desumoylating enzymes. Biochim Biophys Acta 1792(3):155–162

    Article  PubMed  CAS  Google Scholar 

  20. Chiu SY et al (2008) SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol 6(12):e310

    Article  PubMed  Google Scholar 

  21. Itahana Y, Yeh ET, Zhang Y (2006) Nucleocytoplasmic shuttling modulates activity and ubiquitination-dependent turnover of SUMO-specific protease 2. Mol Cell Biol 26(12):4675–4689

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation, Beijing, People’s Republic of China, grant No. 81102513 (to Dr. Han Lu), grant No. 81072703 (to Dr. Buwei Yu). Shanghai Health Bureau Scientific Research Foundation, Shanghai, People’s Republic of China, grant No. 10411951700 (to Dr. Fujun Zhang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Buwei Yu.

Additional information

Han Lu and Bin Liu both contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, H., Liu, B., You, S. et al. SENP2 regulates MEF2A de-SUMOylation in an activity dependent manner. Mol Biol Rep 40, 2485–2490 (2013). https://doi.org/10.1007/s11033-012-2329-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2329-x

Keywords

Navigation