Skip to main content

Advertisement

Log in

Down-regulation of platelet-derived growth factor-D expression blockades NF-κB pathway to inhibit cell proliferation and invasion as well as induce apoptosis in esophageal squamous cell carcinoma

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Substantial evidence has demonstrated that platelet-derived growth factor-D (PDGF-D) is tightly associated with the development and progression of tumors. However, its biological functions in esophageal squamous cell carcinoma (ESCC) remain to be delineated. In this study, we found that expressions of PDGF-D mRNA and protein in ESCC tissues and cells were significantly higher than that in normal esophageal epithelial tissues (P < 0.05), further investigation showed that PDGF-D protein level in EC1 cells was obviously higher than those in EC9706 and Eca109 cells (P < 0.05). Elevated PDGF-D level was closely associated with TNM staging, tumor differentiation and lymph node metastasis (P < 0.05), but not related to the patients’ age and gender (P > 0.05). In addition, down-regulation of PDGF-D expression markedly inhibited proliferation, reduced invasion and induced apoptosis in EC1 cells. More importantly, reduced PDGF-D level evoked the down-regulation of p65 and p-IκBα proteins and elevation of IκBα protein of NF-κB pathway, accompanied with the decreases of bcl-2 and MMP-9 protein expressions and increases of bax protein level and caspase-3 activities. Correctively, our data suggest that PDGF-D plays pivotal roles in the development and progression of ESCC, and combinations with PDGF-D and NF-κB pathway may be effective and feasible molecular targets for therapy of ESCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ilson DH, Kelsen DP (1994) Combined modality therapy in the treatment of esophageal cancer. Semin Oncol 21(4):493–507

    PubMed  CAS  Google Scholar 

  2. Pisani P, Parkin DM, Bray F, Ferlay J (1999) Estimates of the worldwide mortality from 25 cancers in 1990. Int J Cancer 83(1):18–29

    Article  PubMed  CAS  Google Scholar 

  3. Yang CS (1980) Research on esophageal cancer in China: a review. Cancer Res 40(8 Pt 1):2633–2644

    PubMed  CAS  Google Scholar 

  4. Ekman S, Dreilich M, Lennartsson J, Wallner B, Brattstrom D, Sundbom M, Bergqvist M (2008) Esophageal cancer: current and emerging therapy modalities. Expert Rev Anticancer Ther 8(9):1433–1448

    Article  PubMed  Google Scholar 

  5. Hiyama T, Yoshihara M, Tanaka S, Chayama K (2007) Genetic polymorphisms and esophageal cancer risk. Int J Cancer 121(8):1643–1658

    Article  PubMed  CAS  Google Scholar 

  6. Mandard AM, Hainaut P, Hollstein M (2000) Genetic steps in the development of squamous cell carcinoma of the esophagus. Mutat Res 462(2–3):335–342

    PubMed  CAS  Google Scholar 

  7. Stoner GD, Gupta A (2001) Etiology and chemoprevention of esophageal squamous cell carcinoma. Carcinogenesis 22(11):1737–1746

    Article  PubMed  CAS  Google Scholar 

  8. Enzinger PC, Mayer RJ (2003) Esophageal cancer. N Engl J Med 349(23):2241–2252

    Article  PubMed  CAS  Google Scholar 

  9. La Madrid AM, Campbell N, Smith S, Cohn SL, Salgia R (2012) Targeting ALK: a promising strategy for the treatment of non-small cell lung cancer, non-Hodgkin’s lymphoma, and neuroblastoma. Target Oncol 7(3):199–210

    Article  PubMed  Google Scholar 

  10. Guo JX, Tao QS, Lou PR, Chen XC, Chen J, Yuan GB (2012) miR-181b as a potential molecular target for anticancer therapy of gastric neoplasms. Asian Pac J Cancer Prev 13(5):2263–2267

    Article  PubMed  Google Scholar 

  11. Andrae J, Gallini R, Betsholtz C (2008) Role of platelet-derived growth factors in physiology and medicine. Genes Dev 22(10):1276–1312

    Article  PubMed  CAS  Google Scholar 

  12. Ross R (1987) Platelet-derived growth factor. Annu Rev Med 38:71–79

    Article  PubMed  CAS  Google Scholar 

  13. Heldin CH, Westermark B (1999) Mechanism of action and in vivo role of platelet-derived growth factor. Physiol Rev 79(4):1283–1316

    PubMed  CAS  Google Scholar 

  14. Heldin CH, Hammacher A, Nister M, Westermark B (1988) Structural and functional aspects of platelet-derived growth factor. Br J Cancer 57(6):591–593

    Article  PubMed  CAS  Google Scholar 

  15. Yu J, Ustach C, Kim HR (2003) Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol 36(1):49–59

    Article  PubMed  CAS  Google Scholar 

  16. Wang Z, Kong D, Li Y, Sarkar FH (2009) PDGF-D signaling: a novel target in cancer therapy. Curr Drug Targets 10(1):38–41

    Article  PubMed  Google Scholar 

  17. Ustach CV, Taube ME, Hurst NJ Jr, Bhagat S, Bonfil RD, Cher ML, Schuger L, Kim HR (2004) A potential oncogenic activity of platelet-derived growth factor d in prostate cancer progression. Cancer Res 64(5):1722–1729

    Article  PubMed  CAS  Google Scholar 

  18. Ustach CV, Kim HR (2005) Platelet-derived growth factor D is activated by urokinase plasminogen activator in prostate carcinoma cells. Mol Cell Biol 25(14):6279–6288

    Article  PubMed  CAS  Google Scholar 

  19. Wang Z, Kong D, Banerjee S, Li Y, Adsay NV, Abbruzzese J, Sarkar FH (2007) Down-regulation of platelet-derived growth factor-D inhibits cell growth and angiogenesis through inactivation of Notch-1 and nuclear factor-kappaB signaling. Cancer Res 67(23):11377–11385

    Article  PubMed  CAS  Google Scholar 

  20. Xu L, Tong R, Cochran DM, Jain RK (2005) Blocking platelet-derived growth factor-D/platelet-derived growth factor receptor beta signaling inhibits human renal cell carcinoma progression in an orthotopic mouse model. Cancer Res 65(13):5711–5719

    Article  PubMed  CAS  Google Scholar 

  21. Wang Y, Hu C, Dong R, Huang X, Qiu H (2011) Platelet-derived growth factor-D promotes ovarian cancer invasion by regulating matrix metalloproteinases 2 and 9. Asian Pac J Cancer Prev 12(12):3367–3370

    PubMed  Google Scholar 

  22. Zhao L, Zhang C, Liao G, Long J (2010) RNAi-mediated inhibition of PDGF-D leads to decreased cell growth, invasion and angiogenesis in the SGC-7901 gastric cancer xenograft model. Cancer Biol Ther 9(1):42–48

    Article  PubMed  CAS  Google Scholar 

  23. Lokker NA, Sullivan CM, Hollenbach SJ, Israel MA, Giese NA (2002) Platelet-derived growth factor (PDGF) autocrine signaling regulates survival and mitogenic pathways in glioblastoma cells: evidence that the novel PDGF-C and PDGF-D ligands may play a role in the development of brain tumors. Cancer Res 62(13):3729–3735

    PubMed  CAS  Google Scholar 

  24. Liu Y, Li K, Ren Z, Li S, Zhang H, Fan Q (2012) Clinical implication of elevated human cervical cancer oncogene-1 expression in esophageal squamous cell carcinoma. J Histochem Cytochem 60(7):512–520

    PubMed  Google Scholar 

  25. Li S, Jiao J, Lu Z, Zhang M (2009) An essential role for N-cadherin and beta-catenin for progression in tongue squamous cell carcinoma and their effect on invasion and metastasis of Tca8113 tongue cancer cells. Oncol Rep 21(5):1223–1233

    PubMed  CAS  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  27. Kataoka K, Ono T, Murata H, Morishita M, Yamamoto KI, Sakaguchi M, Huh NH (2012) S100A7 promotes the migration and invasion of osteosarcoma cells via the receptor for advanced glycation end products. Oncol Lett 3(5):1149–1153

    PubMed  CAS  Google Scholar 

  28. Lu Z, Liu H, Xue L, Xu P, Gong T, Hou G (2008) An activated Notch1 signaling pathway inhibits cell proliferation and induces apoptosis in human esophageal squamous cell carcinoma cell line EC9706. Int J Oncol 32(3):643–651

    PubMed  CAS  Google Scholar 

  29. LaRochelle WJ, Jeffers M, Corvalan JR, Jia XC, Feng X, Vanegas S, Vickroy JD, Yang XD, Chen F, Gazit G et al (2002) Platelet-derived growth factor D: tumorigenicity in mice and dysregulated expression in human cancer. Cancer Res 62(9):2468–2473

    PubMed  CAS  Google Scholar 

  30. Najy AJ, Won JJ, Movilla LS, Kim HR (2012) Differential tumorigenic potential and matriptase activation between PDGF B versus PDGF D in prostate cancer. Mol Cancer Res 10(8):1087–1097

    Article  PubMed  CAS  Google Scholar 

  31. Li H, Fredriksson L, Li X, Eriksson U (2003) PDGF-D is a potent transforming and angiogenic growth factor. Oncogene 22(10):1501–1510

    Article  PubMed  CAS  Google Scholar 

  32. Okada A, Yaguchi T, Kanno T, Gotoh A, Nakano T, Nishizaki T (2012) PDGF-D/PDGF-betabeta receptor-regulated chemotaxis of malignant mesothelioma cells. Cell Physiol Biochem 29(1–2):241–250

    Article  PubMed  CAS  Google Scholar 

  33. Wang Z, Ahmad A, Li Y, Kong D, Azmi AS, Banerjee S, Sarkar FH (2010) Emerging roles of PDGF-D signaling pathway in tumor development and progression. Biochim Biophys Acta 1806(1):122–130

    PubMed  CAS  Google Scholar 

  34. Yu H, Mohan S, Natarajan M (2012) Radiation-triggered NF-kappaB activation is responsible for the angiogenic signaling pathway and neovascularization for breast cancer cell proliferation and growth. Breast Cancer (Auckl) 6:125–135

    Google Scholar 

  35. Astarci E, Sade A, Cimen I, Savas B, Banerjee S (2012) The NF-kappaB target genes ICAM-1 and VCAM-1 are differentially regulated during spontaneous differentiation of Caco-2 cells. FEBS J 279(16):2966–2986

    Article  PubMed  CAS  Google Scholar 

  36. Chaturvedi MM, Sung B, Yadav VR, Kannappan R, Aggarwal BB (2011) NF-kappaB addiction and its role in cancer: ‘one size does not fit all’. Oncogene 30(14):1615–1630

    Article  PubMed  CAS  Google Scholar 

  37. Carbone C, Melisi D (2012) NF-kappaB as a target for pancreatic cancer therapy. Expert Opin Ther Targets 16(Suppl 2):S1–S10

    Article  PubMed  CAS  Google Scholar 

  38. Madonna G, Ullman CD, Gentilcore G, Palmieri G, Ascierto PA (2012) NF-kappaB as potential target in the treatment of melanoma. J Transl Med 10:53

    Article  PubMed  CAS  Google Scholar 

  39. Liu YC, Chiang IT, Hsu FT, Hwang JJ (2012) Using NF-kappaB as a molecular target for theranostics in radiation oncology research. Expert Rev Mol Diagn 12(2):139–146

    Article  PubMed  CAS  Google Scholar 

  40. Nogueira L, Ruiz-Ontanon P, Vazquez-Barquero A, Moris F, Fernandez-Luna JL (2011) The NFkappaB pathway: a therapeutic target in glioblastoma. Oncotarget 2(8):646–653

    PubMed  Google Scholar 

  41. Wang X, Belguise K, Kersual N, Kirsch KH, Mineva ND, Galtier F, Chalbos D, Sonenshein GE (2007) Oestrogen signalling inhibits invasive phenotype by repressing RelB and its target BCL2. Nat Cell Biol 9(4):470–478

    Article  PubMed  CAS  Google Scholar 

  42. Kong D, Wang Z, Sarkar SH, Li Y, Banerjee S, Saliganan A, Kim HR, Cher ML, Sarkar FH (2008) Platelet-derived growth factor-D overexpression contributes to epithelial-mesenchymal transition of PC3 prostate cancer cells. Stem Cells 26(6):1425–1435

    Article  PubMed  CAS  Google Scholar 

  43. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ (2001) Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20(31):4188–4197

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Guo, XH., Zheng, QF. et al. Down-regulation of platelet-derived growth factor-D expression blockades NF-κB pathway to inhibit cell proliferation and invasion as well as induce apoptosis in esophageal squamous cell carcinoma. Mol Biol Rep 40, 2473–2483 (2013). https://doi.org/10.1007/s11033-012-2328-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2328-y

Keywords

Navigation