Skip to main content
Log in

An electrochemical biosensor for 3-hydroxybutyrate detection based on screen-printed electrode modified by coenzyme functionalized carbon nanotubes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

3-Hydroxybutyrate, one of the main blood ketone bodies, has been considered as a critical indicator for diagnosis of diabetic ketoacidosis. Biosensors designed for detection of 3-hydroxybutyrate with advantages of precision, easiness and speedy performance have attracted increasing attention. This study attempted to develop a 3-hydroxybutyrate dehydrogenase-based biosensor in which single-walled carbon nanotubes (SWCNT) was used in order to immobilize the cofactor, NAD+, on the surface of screen-printed electrode. The formation of NAD+–SWCNT conjugates was assessed by electrochemistry and electron microscopy. Cyclic voltammetry was used to analyze the performance of this biosensor electrochemically. The considerable shelf life and reliability of the proposed biosensor to analyze real sample was confirmed by this method. The reduction in the over potential of electrochemical oxidation of NADH to −0.15 V can be mentioned as a prominent feature of this biosensor. This biosensor can detect 3-hydroxybutyrate in the linear range of 0.01–0.1 mM with the low detection limit of 0.009 mM. Simultaneous application of screen-printed electrode and SWCNT has made the biosensor distinguished which can open new prospects for detection of other clinically significant metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adam V, Kizek R (2008) Utilization of electrochemical sensors and biosensors in biochemistry and molecular biology. Sensors 8(10):6125–6131

    Article  Google Scholar 

  2. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102(1):29–45. doi:10.1111/j.1749-6632.1962.tb13623.x

    Article  PubMed  CAS  Google Scholar 

  3. Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. Sensors 8(4):2043–2081

    Article  CAS  Google Scholar 

  4. Wallace TM, Matthews DR (2004) Recent advances in the monitoring and management of diabetic ketoacidosis. QJM 97(12):773–780. doi:10.1093/qjmed/hch132

    Article  PubMed  CAS  Google Scholar 

  5. Laffel L (1999) Ketone bodies: a review of physiology, pathophysiology and application of monitoring to diabetes. Diabetes Metab Res Rev 15(6):412–426

    Article  PubMed  CAS  Google Scholar 

  6. Kiba N, Saegusa K, Furusawa M (1997) Post-column enzyme reactors for chemiluminometric detection of glucose, 1,5-anhydroglucitol and 3-hydroxybutyrate in an anion-exchange chromatographic system. J Chromatogr B Biomed Sci Appl 689(2):393–398

    Article  PubMed  CAS  Google Scholar 

  7. Kimura M, Kobayashi K, Matsuoka A, Hayashi K, Kimura Y (1985) Head-space gas-chromatographic determination of 3-hydroxybutyrate in plasma after enzymic reactions, and the relationship among the three ketone bodies. Clin Chem 31(4):596–598

    PubMed  CAS  Google Scholar 

  8. Tabata M, Totani M (1995) A chemiluminescence-flow injection analysis of serum 3-hydroxybutyrate using a bioreactor consisting of 3-hydroxybutyrate dehydrogenase and NADH oxidase. Anal Biochem 229(1):133–138

    Article  PubMed  CAS  Google Scholar 

  9. Forrow NJ, Sanghera GS, Walters SJ, Watkin JL (2005) Development of a commercial amperometric biosensor electrode for the ketone d-3-hydroxybutyrate. Biosens Bioelectron 20(8):1617–1625

    Article  PubMed  CAS  Google Scholar 

  10. Kwan RCH, Hon PYT, Mak WC, Law LY, Hu J, Renneberg R (2006) Biosensor for rapid determination of 3-hydroxybutyrate using bienzyme system. Biosens Bioelectron 21(7):1101–1106

    Article  PubMed  CAS  Google Scholar 

  11. Li G, Ma NZ, Wang Y (2005) A new handheld biosensor for monitoring blood ketones. Sens Actuat B Chem 109(2):285–290

    Article  Google Scholar 

  12. Fang L, Wang S-H, Liu C-C (2008) An electrochemical biosensor of the ketone 3-[beta]-hydroxybutyrate for potential diabetic patient management. Sens Actuat B Chem 129(2):818–825

    Article  Google Scholar 

  13. Zhou J-L, Nie P-P, Zheng H-T, Zhang J-M (2009) Progress of electrochemical biosensors based on nicotinamide adenine dinucleotide (phosphate)-dependent dehydrogenases. Chin J Anal Chem 37(4):617–623

    Article  CAS  Google Scholar 

  14. Lobo MJ, Miranda AJ, Tuñón P (1997) Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Electroanalysis 9(3):191–202. doi:10.1002/elan.1140090302

    Article  CAS  Google Scholar 

  15. Omidfar K, Kia S, Kashanian S, Paknejad M, Besharatie A, Kashanian S, Larijani B (2010) Colloidal nanogold-based immunochromatographic strip test for the detection of digoxin toxicity. Appl Biochem Biotechnol 160(3):843–855. doi:10.1007/s12010-009-8535-x

    Article  PubMed  CAS  Google Scholar 

  16. Hyun S, Park TH (2011) Integration of biomolecules and nanomaterials: towards highly selective and sensitive biosensors. Biotechnol J 6(11):1310–1316. doi:10.1002/biot.201100006

    Article  Google Scholar 

  17. Omidfar K, Dehdast A, Zarei H, Sourkohi BK, Larijani B (2011) Development of urinary albumin immunosensor based on colloidal AuNP and PVA. Biosens Bioelectron 26(10):4177–4183

    Article  PubMed  CAS  Google Scholar 

  18. Omidfar K, Zarei H, Gholizadeh F, Larijani B (2012) A high-sensitivity electrochemical immunosensor based on mobile crystalline material-41–polyvinyl alcohol nanocomposite and colloidal gold nanoparticles. Anal Biochem 421:649–656

    Article  PubMed  CAS  Google Scholar 

  19. Endo M, Strano M, Ajayan P (2008) Potential applications of carbon nanotubes. in: carbon nanotubes, vol 111. Topics in applied physics. Springer, Berlin/Heidelberg, pp 13–61. doi:10.1007/978-3-540-72865-8_2

  20. Jeykumari DRS, Narayanan SS (2008) Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications. Biosens Bioelectron 23(11):1686–1693

    Article  PubMed  CAS  Google Scholar 

  21. Xue C-H, Zhou R-J, Shi M-M, Wu G, Zhang X-B, Wang M, Chen H-Z (2010) Electrochemistry of glucose oxidase immobilized on carbon nanotubes noncovalently functionalized by multihydroxyl and multicarboxyl groups. J Electroanal Chem 642:92–97

    Article  CAS  Google Scholar 

  22. Gao Y, Kyratzis I (2008) Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide—a critical assessment. Bioconjug Chem 19(10):1945–1950. doi:10.1021/bc800051c

    Article  PubMed  CAS  Google Scholar 

  23. Kim J, Grate JW, Wang P (2006) Nanostructures for enzyme stabilization. Chem Eng Sci 61(3):1017–1026

    Article  CAS  Google Scholar 

  24. Hart JP, Crew A, Crouch E, Honeychurch KC, Pemberton RM (2005) Some recent designs and developments of screen printed carbon electrochemical sensors/biosensors for biomedical, environmental, and industrial analyses. Anal Lett 37(5):789–830. doi:10.1081/al-120030682

    Article  Google Scholar 

  25. Fanjul-Bolado P, Queipo P, Lamas-Ardisana PJ, Costa-García A (2007) Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools. Talanta 74(3):427–433

    Article  PubMed  CAS  Google Scholar 

  26. Sharma MK, Agarwal GS, Rao VK, Upadhyay S, Merwyn S, Gopalan N, Rai GP, Vijayaraghavan R, Prakash S (2010) Amperometric immunosensor based on gold nanoparticles/alumina sol-gel modified screen-printed electrodes for antibodies to Plasmodium falciparum histidine rich protein-2. Analyst 135(3):608–614

    Article  PubMed  CAS  Google Scholar 

  27. Silva Nunes G, Jeanty G, Marty J-L (2004) Enzyme immobilization procedures on screen-printed electrodes used for the detection of anticholinesterase pesticides: comparative study. Anal Chim Acta 523(1):107–115

    Article  CAS  Google Scholar 

  28. Pellicer C, Gomez-Caballero A, Unceta N, Goicolea MA, Barrio RJ (2010) Using a portable device based on a screen-printed sensor modified with a molecularly imprinted polymer for the determination of the insecticide fenitrothion in forest samples. Anal Methods 2(9):1280–1285

    Article  CAS  Google Scholar 

  29. Khorsand F, Riahi S, Eynollahi Fard S, Kashanian S, Naeemy A, Larijani B, Omidfar K Development of 3-hydroxybutyrate dehydrogenase enzyme biosensor based on carbon nanotube modified screen-printed electrode. IET Nanobiotechnol (in press)

  30. Omidfar K, Rasaee MJ, Zaraee AB, Amir MP, Rahbarizadeh F (2002) Stabilization of penicillinase-hapten conjugate for enzyme immunoassay. J Immunoassay Immunochem 23(3):385–398. doi:10.1081/ias-120013035

    Article  PubMed  CAS  Google Scholar 

  31. Osorio AG, Silveira ICL, Bueno VL, Bergmann CP (2008) H2SO4/HNO3/HCl-functionalization and its effect on dispersion of carbon nanotubes in aqueous media. Appl Surf Sci 255(5):2485–2489. doi:10.1016/j.apsusc.2008.07.144

    Article  CAS  Google Scholar 

  32. Chakraborty S, Raj CR (2007) Mediated electrocatalytic oxidation of bioanalytes and biosensing of glutamate using functionalized multiwall carbon nanotubes–biopolymer nanocomposite. Electroanal Chem 609(2):155–162

    Article  CAS  Google Scholar 

  33. Kim UJ, Furtado CA, Liu X, Chen G, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127(44):15437–15445. doi:10.1021/ja052951o

    Article  PubMed  CAS  Google Scholar 

  34. Kumar S, Chen S-M (2008) Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes—a review. Sensors 8(2):739–766

    Article  CAS  Google Scholar 

  35. Zhou H, Zhang Z, Yu P, Su L, Ohsaka T, Mao L (2010) Noncovalent attachment of NAD+ cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors. Langmuir 26(8):6028–6032. doi:10.1021/la903799n

    Article  PubMed  CAS  Google Scholar 

  36. Wang XS, Liu P, Zheng HT, Hu H, Zheng WJ, Suye SI (2011) Preparation of nicotinamide adenine dinucleotide functionalized multi-walled carbon nanotube and its application to dehydrogenase biosensor. Adv Mater Res 298:121–127

    Article  CAS  Google Scholar 

  37. Wu B-Y, Hou S-H, Yin F, Zhao Z-X, Wang Y-Y, Wang X-S, Chen Q (2007) Amperometric glucose biosensor based on multilayer films via layer-by-layer self-assembly of multi-wall carbon nanotubes, gold nanoparticles and glucose oxidase on the Pt electrode. Biosens Bioelectron 22(12):2854–2860

    Article  PubMed  CAS  Google Scholar 

  38. Zhang M, Smith A, Gorski W (2004) Carbon nanotube–chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76(17):5045–5050. doi:10.1021/ac049519u

    Article  PubMed  CAS  Google Scholar 

  39. Xu Z, Gao N, Chen H, Dong S (2005) Biopolymer and carbon nanotubes interface prepared by self-assembly for studying the electrochemistry of microperoxidase-11. Langmuir 21(23):10808–10813. doi:10.1021/la051445+

    Article  PubMed  CAS  Google Scholar 

  40. Zhang R, Wang X, Shiu K-K (2007) Accelerated direct electrochemistry of hemoglobin based on hemoglobin–carbon nanotube (Hb–CNT) assembly. J Colloid Interface Sci 316(2):517–522

    Article  PubMed  CAS  Google Scholar 

  41. Musameh M, Wang J, Merkoci A, Lin Y (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4(10):743–746

    Article  CAS  Google Scholar 

  42. Wooten M, Gorski W (2010) Facilitation of NADH electro-oxidation at treated carbon nanotubes. Anal Chem 82(4):1299–1304. doi:10.1021/ac902301b

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from Endocrinology and Metabolism Research Center of Tehran University of Medical Sciences, Tehran, I.R. Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kobra Omidfar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorsand, F., Darziani Azizi, M., Naeemy, A. et al. An electrochemical biosensor for 3-hydroxybutyrate detection based on screen-printed electrode modified by coenzyme functionalized carbon nanotubes. Mol Biol Rep 40, 2327–2334 (2013). https://doi.org/10.1007/s11033-012-2314-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2314-4

Keywords

Navigation