Skip to main content
Log in

GLP-1-dependent and independent effects and molecular mechanisms of a dipeptidyl peptidase 4 inhibitor in vascular endothelial cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

An Erratum to this article was published on 28 December 2012

Abstract

The potential atheroprotective effects of glucagon-like peptide-1 (GLP-1), long-acting GLP-1 analogues and inhibitors of the enzyme dipeptidyl peptidase 4 (DPP-4) are currently the subject of intense research. Recent evidence suggests the effects of DPP-IV inhibitors, may, in-part, be mediated by GLP-1 independent molecular mechanisms. In this report we demonstrate that treatment of human vascular endothelial cells with the DPP-IV inhibitor sitagliptin inhibited tumour necrosis factor alpha (TNFα) induction of plasminogen activator inhibitor type-1 (PAI-1), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) mRNA and protein expression and that this effect was observed to be both GLP-1-dependent and independent. Importantly we identify a molecular mechanism involving sitagliptin-mediated attenuation of TNFα-mediated induction of NFκB and orphan nuclear receptor NUR77 mRNA expression, also able to be reproduced, in part, independent of GLP-1. Taken together these observations may serve to provide a molecular explanation, involving transcriptional regulation of gene expression, for recent in vivo studies suggesting DPP-IV inhibitors may have novel, GLP-1 independent, effects in acting to attenuate endothelial cell dysfunction and atherogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hobb FD (2006) Type-2 diabetes mellitus related cardiovascular risk: new options for interventions to reduce risk and treatment goals. Atherosclerosis 7:29–32

    Google Scholar 

  2. Vanhoutte PM (2009) Endothelial dysfunction: the first step toward coronary arteriosclerosis. Circ J 73:595–601

    Article  PubMed  CAS  Google Scholar 

  3. Morigi M, Angioletti S, Imberti B, Donadelli R, Micheletti G, Figliuzzi M, Remuzzi A, Zoja C, Remuzzi G (1998) Leukocyte–endothelial interaction is augmented by high glucose concentrations and hyperglycemia in a NFkB-dependent fashion. J Clin Invest 101:1905–1915

    Article  PubMed  CAS  Google Scholar 

  4. Liu HB, Hu YS, Medcalf RL, Simpson RW, Dear AE (2005) Thiazolidinediones inhibit TNF alpha induction of PAI-1 independent of PPARgamma activation. Biochem Biophys Res Commun 334:30–37

    Article  PubMed  CAS  Google Scholar 

  5. Liu HB, Hu YS, Simpson RW, Dear AE (2008) Glucagon-like peptide-1 attenuates tumour necrosis factor-alpha-mediated induction of plasminogen activator inhibitor-1 expression. J Endocrinol 196:57–65

    Article  PubMed  CAS  Google Scholar 

  6. Norata GD, Tibolla G, Seccomandi PM, Poletti A, Catapano AL (2006) Dihydrotestosterone decreases tumor necrosis factor-alpha and lipopolysaccharide-induced inflammatory response in human endothelial cells. J Clin Endocrinol Metab 91:546–554

    Article  PubMed  CAS  Google Scholar 

  7. Kumar S, Sharma A, Madan B, Singhal V, Ghosh B (2007) Isoliquiritigenin inhibits IkB kinase activity and ROS generation to block TNF-alpha induced expression of cell adhesion molecules on human endothelial cells. Biochem Pharmacol 73:602–1612

    Article  Google Scholar 

  8. Iwasaki H, Okamoto R, Kato S, Konishi K, Mizutani H, Yamada N, Isaka N, Nakano T, Ito M (2008) High glucose induces plasminogen activator inhibitor-1 expression through Rho/Rho-kinase-mediated NF-kappaB activation in bovine aortic endothelial cells. Atherosclerosis 196:22–28

    Article  PubMed  CAS  Google Scholar 

  9. Kim W, Egan JM (2008) The role of incretins in glucose homeostasis and diabetes treatment. Pharmacol Rev 60:470–512

    Article  PubMed  CAS  Google Scholar 

  10. Drab SR (2010) Incretin-based therapies for type 2 diabetes mellitus: current status and future prospects. Pharmacotherapy 30:609–624

    Article  PubMed  CAS  Google Scholar 

  11. Matheeussen V, Baerts L, De Meyer G, De Keulenaer G, Van der Veken P, Augustyns K, Dubois V, Scharpe S, De Meester I (2011) Expression and spatial heterogeneity of dipeptidyl peptidases in endothelial cells of conduct vessels and capillaries. Biol Chem 392:189–198

    Article  PubMed  CAS  Google Scholar 

  12. Takasawa W, Ohnuma K, Hatano R, Endo Y, Dang NH, Morimoto C (2010) Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines. Biochem Biophys Res Commun 401:7–12

    Article  PubMed  CAS  Google Scholar 

  13. Shah Z, Pineda C, Kampfrath T (2011) Acute DPP-4 inhibition modulates vascular tone through GLP-1 independent pathways. Vascul Pharmacol 55:2–9

    Article  PubMed  CAS  Google Scholar 

  14. Fadini GP, Avogaro A (2011) Cardiovascular effects of DPP-4 inhibition: beyond GLP-1. Vascul Pharmacol 55:10–16

    Article  PubMed  CAS  Google Scholar 

  15. Thornberry NA, Weber AE (2007) Discovery of JANUVIA (Sitagliptin), a selective dipeptidyl peptidase 4 inhibitor for the treatment of type 2 diabetes. Curr Top Med Chem 7:557–568

    Article  PubMed  CAS  Google Scholar 

  16. Thornberry NA, Gallwitz B (2009) Mechanism of action of inhibitors of dipeptidyl-peptidase-4 (DPP-4). Best Pract Res Clin Endocrinol Metab 23:479–486 (Review)

    Article  PubMed  CAS  Google Scholar 

  17. Mu J, Petrov A, Eiermann GJ, Woods J, Zhou YP, Li Z, Zycband E, Feng Y, Zhu L, Roy RS, Howard AD, Li C, Thornberry NA, Zhang BB (2009) Inhibition of DPP-4 with sitagliptin improves glycemic control and restores islet cell mass and function in a rodent model of type 2 diabetes. Eur J Pharmacol 623:148–154

    Article  PubMed  CAS  Google Scholar 

  18. Dobrian AD, Ma Q, Lindsay JW, Leone KA, Ma K, Coben J, Galkina EV, Nadler JL (2011) Dipeptidyl peptidase 4 inhibitor sitagliptin reduces local inflammation in adipose tissue and in pancreatic islets of obese mice. Am J Physiol Endocrinol Metab 300:E410–E421

    Article  PubMed  CAS  Google Scholar 

  19. Shirakawa J, Fujii H, Ohnuma K, Sato K, Ito Y, Kaji M, Sakamoto E, Koganei M, Sasaki H, Nagashima Y, Amo K, Aoki K, Morimoto C, Takeda E, Terauchi Y (2011) Diet-induced adipose tissue inflammation and liver steatosis are prevented by DPP-4 inhibition in diabetic mice. Diabetes 60:1246–1257

    Article  PubMed  CAS  Google Scholar 

  20. Cockerill GW, Meyer G, Noack L, Vadas MA, Gamble JR (1994) Characterization of a spontaneously transformed human endothelial cell line. Lab Invest 71:497–509

    PubMed  CAS  Google Scholar 

  21. Donnelly D (2012) The structure and function of the glucagon like peptide receptor and its ligands. Br J Pharmacol 166:27–41

    Article  PubMed  CAS  Google Scholar 

  22. Hou B, Eren M, Painter CA, Covington JW, Dixon JD, Schoenhard JA, Vaughan DE (2004) Tumor necrosis factor alpha activates the human plasminogen activator inhibitor-1 gene through a distal nuclear factor kappaB site. J Biol Chem 279:18127–18136

    Article  PubMed  CAS  Google Scholar 

  23. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T (1995) Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 9:899–909

    PubMed  CAS  Google Scholar 

  24. Gruber F, Hufnagl P, Hofer-Warbinek R, Schmid JA, Breuss JM, Huber-Beckmann R, Lucerna M, Papac N, Harant H, Lindley I, de Martin R, Binder BR (2003) Direct binding of Nur77/NAK-1 to the plasminogen activator inhibitor 1 (PAI-1) promoter regulates TNF alpha -induced PAI-1 expression. Blood 101:3042–3048

    Article  PubMed  CAS  Google Scholar 

  25. Hu Y, Liu HB, Simpson RW, Dear AE (2011) PPARγ-independent thiazolidinedione-mediated inhibition of NUR77 expression in vascular endothelial cells. J Endocrinol 208:R1–R7

    Article  PubMed  CAS  Google Scholar 

  26. Matsui T, Nishino Y, Takeuchi M, Yamagishi S (2011) Vildagliptin blocks vascular injury in thoracic aorta of diabetic rats by suppressing advanced glycation end product-receptor axis. Pharmacol Res 63:383–388

    Article  PubMed  CAS  Google Scholar 

  27. Ta NN, Schuyler CA, Li Y (2011) DPP-4 (CD26) inhibitor alogliptin inhibits atherosclerosis in Diabetic apolipoprotein E-deficient mice. J Cardiovasc Pharmacol 58:157–166

    Article  PubMed  CAS  Google Scholar 

  28. Hattori S (2011) Sitagliptin reduces albuminuria in patients with type 2 diabetes. Endocr J 58:69–73

    Article  PubMed  CAS  Google Scholar 

  29. Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, Brown NJ, Swift LL, McGuinness OP, Wasserman DH, Vaughan DE, Fogo AB (2004) Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes 53:336–346

    Article  PubMed  CAS  Google Scholar 

  30. Eitzman DT, Westrick RJ, Xu Z, Tyson J, Ginsburg D (2000) Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood 96:4212–4215

    PubMed  CAS  Google Scholar 

  31. Yue Z, Bruemmer D (2009) NR4A Orphan nuclear receptors in cardiovascular biology. Drug Discov Today Dis Mech 6:e43–e48

    Article  Google Scholar 

  32. Kähne T, Reinhold D, Neubert K, Born I, Faust J, Ansorge S (2000) Signal transduction events induced or affected by inhibition of the catalytic activity of dipeptidyl peptidase 4 (CD26). Adv Exp Med Biol 477:131–137

    Article  PubMed  Google Scholar 

Download references

Funding

This work was financially supported in-part by Merck, Sharpe and Dhome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dear AE.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Y, H., HB, L., RW, S. et al. GLP-1-dependent and independent effects and molecular mechanisms of a dipeptidyl peptidase 4 inhibitor in vascular endothelial cells. Mol Biol Rep 40, 2273–2279 (2013). https://doi.org/10.1007/s11033-012-2290-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2290-8

Keywords

Navigation