Skip to main content
Log in

The SOX gene family: function and regulation in testis determination and male fertility maintenance

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Sox (Sry-type HMG box) genes encode a group of proteins characterized by the existence of an SRY (sex-determining region on Y chromosome) box, a 79 amino acid motif that encodes an HMG (high mobility group) domain which can bind and bend DNA, which is the only part in SRY that is conserved between species. The Sox gene family functions in many aspects in embryogenesis, including testis development, CNS neurogenesis, oligodendrocyte development, chondrogenesis, neural crest cell development and other respects. The Sox gene family was originally identified through homology with Sry. The Sry gene is the mammalian testis-determining gene. It functions to open the testis determination pathway directly and close the ovary pathway indirectly. Sry and Sox9 are the most important two genes expressed during testis determination. Besides, researchers have found that Sox8 and Sox9 have functions in the male fertility maintenance after birth. In this review, information was evaluated from mouse or from human if not mentioned otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Dax1:

DSS(dosage-sensitive sex reversal)-CAH(congenital adrenal hypoplasia) critical region on the X chromosome protein

Fgf9:

Fibroblast growth factor 9

Wnt4:

Wingless-related MMTV integration site 4

Wt1 :

Wilms’ tumor suppressor gene 1

AMH/MIS:

Anti-Müllerian ducts hormone/Müllerian inhibiting substance

Sf1:

The steroidogenic factor 1

References

  1. Albrecht KH, Eicher EM (2001) Evidence that Sry is expressed in pre-Sertoli cells and Sertoli and granulosa cells have a common precursor. Dev Biol 240:92–107

    Article  PubMed  CAS  Google Scholar 

  2. Chaboissier MC, Kobayashi A, Vidal VI, Lutzkendorf S, van de Kant HJ, Wegner M, de Rooij DG, Behringer RR, Schedl A (2004) Functional analysis of Sox8 and Sox9 during sex determination in the mouse. Development 131:1891–1901

    Article  PubMed  CAS  Google Scholar 

  3. Kashimada K, Koopman P (2010) Sry: the master switch in mammalian sex determination. Development 137:3921–3930

    Google Scholar 

  4. Burgoyne PS, Buehr M, Koopman P, Rossant J, McLaren A (1988) Cell-autonomous action of the testis-determining gene: sertoli cells are exclusively XY in XX–XY chimaeric mouse testes. Development 102:443–450

    PubMed  CAS  Google Scholar 

  5. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN (1990) A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature 346:240–244

    Article  PubMed  CAS  Google Scholar 

  6. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R (1990) A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 346:245–250

    Article  PubMed  CAS  Google Scholar 

  7. Jäger RJ, Anvret M, Hall K, Scherer G (1990) A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature 348:452–454

    Article  PubMed  Google Scholar 

  8. Berta P, Hawkins JR, Sinclair AH, Taylor A, Griffiths BL, Goodfellow PN, Fellous M (1990) Genetic evidence equating SRY and the testis-determining factor. Nature 348:448–450

    Article  PubMed  CAS  Google Scholar 

  9. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121

    Article  PubMed  CAS  Google Scholar 

  10. Denny P, Swift S, Brand N, Dabhade N, Barton P, Ashworth A (1992) A conserved family of genes related to the testis determining gene, SRY. Nucleic Acids Res 20:2887

    Article  PubMed  CAS  Google Scholar 

  11. Denny P, Swift S, Connor F, Ashworth A (1992) An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J 11:3705–3712

    PubMed  CAS  Google Scholar 

  12. Wright EM, Snopek B, Koopman P (1993) Seven new members of the Sox gene family expressed during mouse development. Nucleic Acids Res 21:744

    Article  PubMed  CAS  Google Scholar 

  13. Chardard D, Chesnel A, Gozé C, Dournon C, Berta P (1993) Pw Sox-1: the first member of the Sox gene family in Urodeles. Nucleic Acids Res 21:3576

    Article  PubMed  CAS  Google Scholar 

  14. Pevny LH, Lovell-Badge R (1997) Sox genes find their feet. Curr Opin Genet Dev 7:338–344

    Google Scholar 

  15. Kiefer JC (2007) Back to basics: Sox genes. Dev Dyn 236:2356–2366

    Google Scholar 

  16. Bowles J, Schepers G, Koopman P (2000) Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators. Dev Biol 227:239–255

    Article  PubMed  CAS  Google Scholar 

  17. Giese K, Pagel J, Grosschedl R (1994) Distinct DNA-binding properties of the high mobility group domain of murine and human SRY sex-determining factors. Proc Natl Acad Sci USA 91:3368–3372

    Article  PubMed  CAS  Google Scholar 

  18. Miyamoto N, Yoshida M, Kuratani S, Matsuo I, Aizawa S (1997) Defects of urogenital development in mice lacking Emx2. Development 124:1653–1664

    PubMed  CAS  Google Scholar 

  19. Birk O, Casiano D, Wassif C, Cogliati T, Zhao L, Zhao Y, Grinberg A, Huang S, Kreidberg J, Parker K et al (2000) The LIM homeobox gene Lhx9 is essential for mouse gonad formation. Nature 403:909–913

    Article  PubMed  CAS  Google Scholar 

  20. de Santa Barbara P, Méjean C, Moniot B, Malclès M, Berta P, Boizet-Bonhoure B (2001) Steroidogenic factor-1 contributes to the cyclic-adenosine monophosphate down-regulation of human SRY gene expression. Biol Reprod 64:775–783

    Article  PubMed  Google Scholar 

  21. Tevosian SG, Albrecht KH, Crispino JD, Fujiwara Y, Eicher EM, Orkin SH (2002) Gonadal differentiation, sex determination and normal Sry expression in mice require direct interaction between transcription partners GATA4 and FOG2. Development 129:4627–4634

    PubMed  CAS  Google Scholar 

  22. Hossain A, Saunders GF (2001) The human sex-determining gene SRY is a direct target of WT1. J Biol Chem 276:16817–16823

    Article  PubMed  CAS  Google Scholar 

  23. Hammes A, Guo JK, Lutsch G, Leheste JR, Landrock D, Ziegler U, Gubler MC, Schedl A (2001) Two splice variants of the WT1 gene have distinct functions during sex determination and nephron formation. Cell 106:319–329

    Article  PubMed  CAS  Google Scholar 

  24. Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, Weissenbach J, Mansour S, Young ID, Goodfellow PN, David Brook J, Schafer AJ (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525–530

    Article  PubMed  CAS  Google Scholar 

  25. Pontiggia A, Rimini R, Harley VR, Goodfellow PN, Lovell-Badge R, Bianchi ME (1994) Sex-reversing mutations affect the architecture of SRY-DNA complexes. EMBO J 13:6115–6124

    PubMed  CAS  Google Scholar 

  26. Ferrari S, Harley VR, Pontiggia A, Goodfellow PN, Lovell-Badge R, Bianchi ME (1992) SRY, like HMG1, recognizes sharp angles in DNA. EMBO J 11:4497–4506

    PubMed  CAS  Google Scholar 

  27. van de Wetering M, Clevers H (1992) Sequence-specific interaction of the HMG box proteins TCF-1 and SRY occurs within the minor groove of a Watson-Crick double helix. EMBO J 11:3039–3044

    PubMed  Google Scholar 

  28. Harley VR, Lovell-Badge R, Goodfellow PN (1994) Definition of a consensus DNA binding site for SRY. Nucleic Acids Res 22:1500–1501

    Article  PubMed  CAS  Google Scholar 

  29. Sánchez-Moreno I, Coral-Vázquez R, Méndez JP, Canto P (2008) Full-length SRY protein is essential for DNA binding. Mol Hum Reprod 14:325–330

    Article  PubMed  Google Scholar 

  30. Yamashita A, Ito M, Takamatsu N, Shiba T (2000) Characterization of Solt, a novel SoxLZ/Sox6 binding protein expressed in adult mouse testis. FEBS Lett 481:147–151

    Article  PubMed  CAS  Google Scholar 

  31. Sekido R, Bar I, Narvaez V, Penny G, Lovell-Badge R (2004) SOX9 is up-regulated by the transient expression of SRY specifically in Sertoli cell precursors. Dev Biol 274:271–279

    Article  PubMed  CAS  Google Scholar 

  32. Hacker A, Capel B, Goodfellow P, Lovell-Badge R (1995) Expression of Sry, the mouse sex determining gene. Development 121:1603–1614

    PubMed  CAS  Google Scholar 

  33. Hiramatsu R, Matoba S, Kanai-Azuma M, Tsunekawa N, Katoh-Fukui Y, Kurohmaru M, Morohashi K, Wilhelm D, Koopman P, Kanai Y (2009) A critical time window of Sry action in gonadal sex determination in mice. Development 136:129–138

    Article  PubMed  CAS  Google Scholar 

  34. Hanley NA, Hagan DM, Clement-Jones M, Ball SG, Strachan T, Salas-Cortés L, McElreavey K, Lindsay S, Robson S, Bullen P, Ostrer H, Wilson DI (2000) SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev 91(1–2):403–407

    Article  PubMed  CAS  Google Scholar 

  35. Vidal VP, Chaboissier MC, de Rooij DG, Schedl A (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216–217

    Article  PubMed  CAS  Google Scholar 

  36. Sekido R (2010) SRY: a transcriptional activator of mammalian testis determination. Int J Biochem Cell Biol 42:417–420

    Google Scholar 

  37. Wilhelm D, Hiramatsu R, Mizusaki H, Widjaja L, Combes AN, Kanai Y, Koopman P (2007) SOX9 regulates prostaglandin D synthase gene transcription in Vivo to ensure testis development. J Biol Chem 282:10553–10560

    Article  PubMed  CAS  Google Scholar 

  38. Mansour S, Hall CM, Pembrey ME, Young ID (1995) A clinical and genetic study of campomelic dysplasia. J Med Genet 32:415–420

    Article  PubMed  CAS  Google Scholar 

  39. Bishop CE, Whitworth DJ, Qin Y, Agoulnik AI, Agoulnik IU, Harrison WR, Behringer RR, Overbeek PA (2000) A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 26:490–494

    Article  PubMed  CAS  Google Scholar 

  40. Barrionuevo F, Bagheri-Fam S, Klattig J, Kist R, Taketo MM, Englert C, Scherer G (2006) Homozygous inactivation of Sox9 causes complete XY sex reversal in mice. Biol Reprod 74:195–201

    Article  PubMed  CAS  Google Scholar 

  41. de Santa Barbara P, Moniot B, Poulat F, Berta P (2000) Expression and subcellular localization of SF-1, SOX9, WT1, and AMH proteins during early human testicular development. Dev Dyn 217:293–298

    Article  PubMed  Google Scholar 

  42. Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P (1996) A male-specific role for SOX9 in vertebrate sex determination. Development 122:2813–2822

    PubMed  CAS  Google Scholar 

  43. Barrionuevo F, Georg I, Scherthan H, Lécureuil C, Guillou F, Wegner M, Scherer G (2009) Testis cord differentiation after the sex determination stage is independent of Sox9 but fails in the combined absence of Sox9 and Sox8. Dev Biol 327:301–312

    Article  PubMed  CAS  Google Scholar 

  44. O’Bryan MK, Takada S, Kennedy CL, Scott G, Harada S, Ray MK, Dai Q, Wilhelm D, de Kretser DM, Eddy EM, Koopman P, Mishina Y (2008) Sox8 is a critical regulator of adult Sertoli cell function and male fertility. Dev Biol 316:359–370

    Article  PubMed  Google Scholar 

  45. Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier MC, Poulat F, Behringer RR, Lovell-Badge R, Capel B (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4:e187

    Article  PubMed  Google Scholar 

  46. Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM (2001) Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104:875–889

    Article  PubMed  CAS  Google Scholar 

  47. Parma P, Radi O, Vidal V, Chaboissier MC, Dellambra E, Valentini S, Guerra L, Schedl A, Camerino G (2006) R-spondin1 is essential in sex determination, skin differentiation and malignancy. Nat Genet 38:1304–1309

    Article  PubMed  CAS  Google Scholar 

  48. De Santa Barbara P, Bonneaud N, Boizet B, Desclozeaux M, Moniot B, Sudbeck P, Scherer G, Poulat F, Berta P (1998) Direct interaction of SRY-related protein SOX9 and steroidogenic factor 1 regulates transcription of the human anti-Müllerian hormone gene. Mol Cell Biol 18:6653–6665

    PubMed  Google Scholar 

  49. Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934

    Article  PubMed  CAS  Google Scholar 

  50. Knower KC, Kelly S, Ludbrook LM, Bagheri-Fam S, Sim H, Bernard P, Sekido R, Lovell-Badge R, Harley VR (2011) Failure of SOX9 regulation in 46XY disorders of sex development with SRY, SOX9 and SF1 mutations. PLoS One 6:e17751

    Article  PubMed  CAS  Google Scholar 

  51. Bernard P, Sim H, Knower K, Vilain E, Harley V (2008) Human SRY inhibits beta-catenin-mediated transcription. Int J Biochem Cell Biol 40:2889–2900

    Article  PubMed  CAS  Google Scholar 

  52. Swain A, Narvaez V, Burgoyne P, Camerino G, Lovell-Badge R (1998) Dax1 antagonizes Sry action in mammalian sex determination. Nature 391:761–767

    Article  PubMed  CAS  Google Scholar 

  53. Kim J, Prawitt D, Bardeesy N, Torban E, Vicaner C, Goodyer P, Zabel B, Pelletier J (1999) The Wilms’ tumor suppressor gene (wt1) product regulates Dax-1 gene expression during gonadal differentiation. Mol Cell Biol 19:2289–2299

    PubMed  CAS  Google Scholar 

  54. Gao F, Maiti S, Alam N, Zhang Z, Deng JM, Behringer RR, Lécureuil C, Guillou F, Huff V (2006) The Wilms tumor gene, Wt1, is required for Sox9 expression and maintenance of tubular architecture in the developing testis. Proc Natl Acad Sci USA 103:11987–11992

    Article  PubMed  CAS  Google Scholar 

  55. Münsterberg A, Lovell-Badge R (1991) Expression of the mouse anti-Müllerian hormone gene suggests a role in both male and female sexual differentiation. Development 113:613–624

    PubMed  Google Scholar 

  56. Takamatsu N, Kanda H, Tsuchiya I, Yamada S, Ito M, Kabeno S, Shiba T, Yamashita S (1995) A gene that is related to SRY and is expressed in the testes encodes a leucine zipper-containing protein. Mol Cell Biol 15:3759–3766

    PubMed  CAS  Google Scholar 

  57. Singh AP, Harada S, Mishina Y (2009) Downstream genes of Sox8 that would affect adult male fertility. Sex Dev 3:16–25

    Article  PubMed  CAS  Google Scholar 

  58. Schepers G, Wilson M, Wilhelm D, Koopman P (2003) SOX8 is expressed during testis differentiation in mice and synergizes with SF1 to activate the Amh promoter in Vitro. J Biol Chem 278:28101–28108

    Article  PubMed  CAS  Google Scholar 

  59. Kanai Y, Kanai-Azuma M, Noce T, Saido TC, Shiroishi T, Hayashi Y, Yazaki K (1996) Identification of two Sox17 messenger RNA isoforms, with and without the high mobility group box region, and their differential expression in mouse spermatogenesis. J Cell Biol 133:667–681

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are indebted to all members of the Sperm Laboratory at Zhejiang University for their enlightening discussion. This project was supported in part by the National Natural Science Foundation of China (Nos. 41276151 and 31072198).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan-Xi Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, T., Hou, CC., She, ZY. et al. The SOX gene family: function and regulation in testis determination and male fertility maintenance. Mol Biol Rep 40, 2187–2194 (2013). https://doi.org/10.1007/s11033-012-2279-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2279-3

Keywords

Navigation