Skip to main content
Log in

Yeast mutator phenotype enforced by Arabidopsis PMS1 expression

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The DNA mismatch repair (MMR) system is a major DNA repair pathway whose function is critical for the correction of DNA biosynthetic errors. MMR is initiated by the binding of MutS proteins to mismatches and unpaired nucleotides followed by the recruitment of MutL proteins. The major MutL activity in eukaryotes is performed by MutLα, the heterocomplex of MLH1-PMS1 in yeast and plants and MLH1-PMS2 in humans. We here report the effect the expression of Arabidopsis PMS1 protein exerts on Saccharomyces cerevisiae genomic stability. A strain carrying specific microsatellite instability reporter systems was chosen for the study. The plant protein failed to complement the hypermutator phenotype of a pms1 deficient strain but increased approximately 14-fold and 2,000-fold the mutation rates of his7-2 and lys2::InsE-A 14 loci of MMR proficient strains when compared to wild-type strains, respectively. Overexpressing AtMLH1 in the AtPMS1-overproducing strain generated an increase in mutation rate comparable to that of AtPMS1 expression alone. Deletion of the C-terminal residues implicated in protein–protein interaction and including the putative endonuclease sequence of AtPMS1 completely eliminated the mutator phenotype. Taken together, these results indicate that the plant proteins affect yeast genomic stability, very possibly altering protein–protein interactions that are necessary to complete repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MMR:

Mismatch repair

At:

Arabidopsis thaliana

Sc:

Saccharomyces cerevisiae

Hs:

Homo sapiens

References

  1. Iyer R, Pluciennik A, Burdett V, Modrich P (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323

    Article  PubMed  CAS  Google Scholar 

  2. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    Article  PubMed  CAS  Google Scholar 

  3. Li G-M (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98

    Article  PubMed  CAS  Google Scholar 

  4. Li G, Modrich P (1995) Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc Natl Acad Sci USA 92:1950–1954

    Article  PubMed  CAS  Google Scholar 

  5. Prolla T, Christie D, Liskay R (1994) Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol Cell Biol 14:407–415

    PubMed  CAS  Google Scholar 

  6. Spampinato C, Modrich P (2000) The MutL ATPase is required for mismatch repair. J Biol Chem 275:9863–9869

    Article  PubMed  CAS  Google Scholar 

  7. Hall M, Shcherbakova P, Kunkel T (2002) Differential ATP binding and intrinsic ATP hydrolysis by amino-terminal domains of the yeast Mlh1 and Pms1 proteins. J Biol Chem 277:3673–3679

    Article  PubMed  CAS  Google Scholar 

  8. Ban C, Junop M, Yang W (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97:85–97

    Article  PubMed  CAS  Google Scholar 

  9. Fukui J, Nishida M, Nakagawa T, Masui R, Kuramitsu S (2008) Bound nucleotide controls the endonuclease activity of mismatch repair enzyme MutL. J Biol Chem 283:12136–12145

    Article  PubMed  CAS  Google Scholar 

  10. Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLα in human mismatch repair. Cell 126:297–308

    Article  PubMed  CAS  Google Scholar 

  11. Kadyrov FA, Holmes SF, Arana ME et al (2007) Saccharomyces cerevisiae MutLα is a mismatch repair endonuclease. J Biol Chem 282:37181–37190

    Article  PubMed  CAS  Google Scholar 

  12. Pillon M, Lorenowicz J, Uckelmann M et al (2010) Structure of the endonuclease domain of MutL: unlicensed to cut. Mol Cell 39:145–151

    Article  PubMed  CAS  Google Scholar 

  13. Correa E, Martina M, De Tullio L, Argaraña C, Barra J (2011) Some amino acids of the Pseudomonas aeruginosa MutL D(Q/M)HA(X)2E(X)4E conserved motif are essential for the in vivo function of the protein but not for the in vitro endonuclease activity. DNA Repair 10:1106–1113

    Article  PubMed  CAS  Google Scholar 

  14. Alou A, Jean M, Domingue O, Belzile FJ (2004) Structure and expression of AtPMS1, the Arabidopsis ortholog of the yeast DNA repair gene PMS1. Plant Sci 167:447–456

    Article  CAS  Google Scholar 

  15. Jean M, Pelletier J, Hilpert M, Belzile F, Kunze R (1999) Isolation and characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana. Mol Gen Genet 262:633–642

    Article  PubMed  CAS  Google Scholar 

  16. Li L, Dion E, Richard G, Domingue O, Jean M, Belzile FJ (2009) The Arabidopsis DNA mismatch repair gene PMS1 restricts somatic recombination between homeologous sequences. Plant Mol Biol 69:675–684

    Article  PubMed  CAS  Google Scholar 

  17. Dion E, Li L, Jean M, Belzile F (2007) An Arabidopsis MLH1 mutant exhibits reproductive defects and reveals a dual role for this gene in mitotic recombination. Plant J 51:431–440

    Article  PubMed  CAS  Google Scholar 

  18. Alou A, Azaiez A, Jean M, Belzile F (2004) Involvement of the Arabidopsis thaliana AtPMS1 gene in somatic repeat instability. Plant Mol Biol 56:339–349

    Article  PubMed  CAS  Google Scholar 

  19. Kalantidis K, Schumacher HT, Alexiadis T, Helm JM (2008) RNA silencing movement in plants. Biol Cell 100:13–26

    Article  PubMed  CAS  Google Scholar 

  20. Clark AB, Cook ME, Tran HT, Gordenin DA, Resnick MA, Kunkel TA (1999) Functional analysis of human MutSα and MutSβ complexes in yeast. Nucleic Acids Res 27:736–742

    Article  PubMed  CAS  Google Scholar 

  21. Galles C, Gomez RL, Spampinato CP (2011) PMS1 from Arabidopsis thaliana: optimization of protein overexpression in Escherichia coli. Mol Biol Rep 38:1063–1070

    Article  PubMed  CAS  Google Scholar 

  22. Hall BM, Ma CX, Liang P, Singh KK (2009) Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria–Delbruck fluctuation analysis. Bioinformatics 25:1564–1565

    Article  PubMed  CAS  Google Scholar 

  23. Shcherbakova P, Kunkel T (1999) Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol Cell Biol 19:3177–3183

    PubMed  CAS  Google Scholar 

  24. Shcherbakova P, Hall M, Lewis M et al (2001) Inactivation of DNA mismatch repair by increased expression of yeast MLH1. Mol Cell Biol 21:940–951

    Article  PubMed  CAS  Google Scholar 

  25. Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA (1997) Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol 17:2859–2865

    PubMed  CAS  Google Scholar 

  26. Spampinato CP, Gomez RL, Galles C, Lario LD (2009) From bacteria to plants: a compendium of mismatch repair assays. Mutat Res 682:110–128

    Article  PubMed  CAS  Google Scholar 

  27. Pang Q, Prolla TA, Liskay RM (1997) Functional domains of the Saccharomyces cerevisiae Mlh1p and Pms1p DNA mismatch repair proteins and their relevance to human hereditary nonpolyposis colorectal cancer-associated mutations. Mol Cell Biol 17:4465–4473

    PubMed  CAS  Google Scholar 

  28. Guerrette S, Acharya S, Fishel R (1999) The interaction of the human MutL homologues in hereditary nonpolyposis colon cancer. J Biol Chem 274:6336–6341

    Article  PubMed  CAS  Google Scholar 

  29. Cutalo JM, Darden TA, Kunkel TA, Tomer KB (2006) Mapping the dimer interface in the C-terminal domains of the yeast MLH1-PMS1 heterodimer. Biochemistry 45:15458–15467

    Article  PubMed  CAS  Google Scholar 

  30. Pillon MC, Miller JH, Guarné A (2011) The endonuclease domain of MutL interacts with the β sliding clamp. DNA Repair 10:87–93

    Article  PubMed  CAS  Google Scholar 

  31. Sia E, Kokoska R, Dominska M, Greenwell P, Petes T (1997) Microsatellite instability in yeast: dependence on repeat unit size and DNA mismatch repair genes. Mol Cell Biol 17:2851–2858

    PubMed  CAS  Google Scholar 

  32. Tran HP, Gordenin DA, Resnick MA (1999) The 3′ to 5′ exonucleases of DNA polymerases δ and ε and the 5′ to 3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol 19:2000–2007

    PubMed  CAS  Google Scholar 

  33. Erdeniz N, Dudley S, Gealy R, Jinks-Robertson S, Liskay RM (2005) Novel PMS1 alleles preferentially affect the repair of primer strand loops during DNA replication. Mol Cell Biol 25:9221–9231

    Article  PubMed  CAS  Google Scholar 

  34. Nicolaides NC, Littman SJ, Modrich P, Kinzler KW, Vogelstein B (1998) A naturally occurring hPMS2 mutation can confer a dominant negative mutator phenotype. Mol Cell Biol 18:1635–1641

    PubMed  CAS  Google Scholar 

  35. Chao Q, Sullivan CD, Getz JM et al (2005) Rapid generation of plant traits via regulation of DNA mismatch repair. Plant Biotech J 3:399–407

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We wish to thank Thomas Kunkel (National Institute of Environmental Health Sciences, Research Triangle Park, USA) for providing yeast strains used in recombinant expression experiments and mutation rate determination assays and Dmitry Gordenin (National Institute of Environmental Health Sciences, Research Triangle Park, USA) for providing YEp112SPGAL and YEp195SPGAL vectors. We would also like to include a special thanks to Rodrigo Gomez for his invaluable contribution to results discussion. This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (PICT 0458), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET; PIP 0018) and Universidad Nacional de Rosario (BIO 221). CPS is a member of the Researcher Career of CONICET. CG is a fellow of the same institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia P. Spampinato.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 27 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galles, C., Spampinato, C.P. Yeast mutator phenotype enforced by Arabidopsis PMS1 expression. Mol Biol Rep 40, 2107–2114 (2013). https://doi.org/10.1007/s11033-012-2269-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2269-5

Keywords

Navigation