Skip to main content
Log in

Molecular characterization of a peritrophic membrane protein from the silkworm, Bombyx mori

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The peritrophic membrane lines the gut of most insects at one or more stages of their life cycles. It facilitates the digestive processes in the guts and protects from invasion by pathogens or food particles. In the current study, a novel PM protein, designated as BmMtch, was identified from the silkworm, Bombyx mori. The open reading frame of BmMtch is 888 bp in length, encoding 295 amino acid residues consisting of two domains (Mito_carr domains) and three transmembrane regions. They are localized on the 11th chromosome as single copy with one exon only. Quantitative real time PCR analysis (qRT-PCR) revealed that BmMtch was mainly expressed in larval fat bodies, Malpighian tubules, testis and ovaries, and could be detected through all stages of the life cycle of silkworm. Immuno-fluorescence analysis indicated that BmMtch was localized within the goblet cell of larval midgut. Western blotting analysis showed that BmMtch were detected in total proteins of PM and larval midgut. The characteristics of BmMtch indicated that BmMtch represents a novel member of insect PM proteins, without chitin-binding domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kato N, Dasgupta R, Smartt CT, Christensen BM (2002) Glucosamine:fructose-6-phosphate aminotransferase: gene characterization, chitin biosynthesis and peritrophic matrix formation in Aedes aegypti. Insect Mol Biol 11:207–216

    Article  PubMed  CAS  Google Scholar 

  2. Casu R, Eisemann C, Pearson R, Riding G, East I et al (1997) Antibody-mediated inhibition of the growth of larvae from an insect causing cutaneous myiasis in a mammalian host. Proc Natl Acad Sci USA 94:8939–8944

    Article  PubMed  CAS  Google Scholar 

  3. Shao L, Devenport M, Fujioka H, Ghosh A, Jacobs-Lorena M (2005) Identification and characterization of a novel peritrophic matrix protein, Ae-Aper50, and the microvillar membrane protein, AEG12, from the mosquito, Aedes aegypti. Insect Biochem Mol Biol 35:947–959

    Article  PubMed  CAS  Google Scholar 

  4. Tellam RL, Wijffels G, Willadsen P (1999) Peritrophic matrix proteins. Insect Biochem Mol Biol 29:87–101

    Article  PubMed  CAS  Google Scholar 

  5. Shen Z, Jacobs-Lorena M (1998) A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression, and characterization. J Biol Chem 273:17665–17670

    Article  PubMed  CAS  Google Scholar 

  6. Devenport M, Fujioka H, Donnelly-Doman M, Shen Z, Jacobs-Lorena M (2005) Storage and secretion of Ag-Aper14, a novel peritrophic matrix protein, and Ag-Muc1 from the mosquito Anopheles gambiae. Cell Tissue Res 320:175–185

    Article  PubMed  CAS  Google Scholar 

  7. Devenport M, Alvarenga PH, Shao L, Fujioka H, Bianconi ML et al (2006) Identification of the Aedes aegypti peritrophic matrix protein AeIMUCI as a heme-binding protein. Biochemistry 45:9540–9549

    Article  PubMed  CAS  Google Scholar 

  8. Yang HJ, Zhou F, Malik FA, Bhaskar R, Li XH et al (2010) Identification and characterization of two chitin-binding proteins from the peritrophic membrane of the silkworm, Bombyx mori L. Arch Insect Biochem Physiol 75:221–230

    Article  PubMed  CAS  Google Scholar 

  9. Wijffels G, Eisemann C, Riding G, Pearson R, Jones A et al (2001) A novel family of chitin-binding proteins from insect type 2 peritrophic matrix. cDNA sequences, chitin binding activity, and cellular localization. J Biol Chem 276:15527–15536

    Article  PubMed  CAS  Google Scholar 

  10. Vuocolo T, Eisemann CH, Pearson RD, Willadsen P, Tellam RL (2001) Identification and molecular characterisation of a peritrophin gene, peritrophin-48, from the myiasis fly Chrysomya bezziana. Insect Biochem Mol Biol 31:919–932

    Article  PubMed  CAS  Google Scholar 

  11. Gaines PJ, Walmsley SJ, Wisnewski N (2003) Cloning and characterization of five cDNAs encoding peritrophin-A domains from the cat flea, Ctenocephalides felis. Insect Biochem Mol Biol 33:1061–1073

    Article  PubMed  CAS  Google Scholar 

  12. Elvin CM, Vuocolo T, Pearson RD, East IJ, Riding GA et al (1996) Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina. cDNA and deduced amino acid sequences. J Biol Chem 271:8925–8935

    Article  PubMed  CAS  Google Scholar 

  13. Schorderet S, Pearson RD, Vuocolo T, Eisemann C, Riding GA et al (1998) cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein, ‘peritrophin-48’, from the larvae of Lucilia cuprina. Insect Biochem Mol Biol 28:99–111

    Article  PubMed  CAS  Google Scholar 

  14. Tellam RL, Vuocolo T, Eisemann C, Briscoe S, Riding G et al (2003) Identification of an immuno-protective mucin-like protein, peritrophin-55, from the peritrophic matrix of Lucilia cuprina larvae. Insect Biochem Mol Biol 33:239–252

    Article  PubMed  CAS  Google Scholar 

  15. Tellam RL, Eisemann C, Casu R, Pearson R (2000) The intrinsic peritrophic matrix protein peritrophin-95 from larvae of Lucilia cuprina is synthesised in the cardia and regurgitated or excreted as a highly immunogenic protein. Insect Biochem Mol Biol 30:9–17

    Article  PubMed  CAS  Google Scholar 

  16. Yin J, Wei ZJ, Li KB, Cao YZ, Guo W (2010) Identification and molecular characterization of a new member of the peritrophic membrane proteins from the meadow moth, loxostege sticticalis. Int J Biol Sci 6:491–498

    Article  PubMed  CAS  Google Scholar 

  17. Guo W, Li G, Pang Y, Wang P (2005) A novel chitin-binding protein identified from the peritrophic membrane of the cabbage looper, Trichoplusia ni. Insect Biochem Mol Biol 35:1224–1234

    Article  PubMed  CAS  Google Scholar 

  18. Wang P, Li G, Granados RR (2004) Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut. Insect Biochem Mol Biol 34:215–227

    Article  PubMed  Google Scholar 

  19. Hao Z, Aksoy S (2002) Proventriculus-specific cDNAs characterized from the tsetse, Glossina morsitans morsitans. Insect Biochem Mol Biol 32:1663–1671

    Article  PubMed  CAS  Google Scholar 

  20. Sarauer BL, Gillott C, Hegedus D (2003) Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella. Insect Mol Biol 12:333–343

    Article  PubMed  CAS  Google Scholar 

  21. Shi X, Chamankhah M, Visal-Shah S, Hemmingsen SM, Erlandson M et al (2004) Modeling the structure of the type I peritrophic matrix: characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains. Insect Biochem Mol Biol 34:1101–1115

    Article  PubMed  CAS  Google Scholar 

  22. Walker JE, Runswick MJ (1993) The mitochondrial transport protein superfamily. J Bioenerg Biomembr 25:435–446

    Article  PubMed  CAS  Google Scholar 

  23. Gross A (2005) Mitochondrial carrier homolog 2: a clue to cracking the BCL-2 family riddle? J Bioenerg Biomembr 37:113–119

    Article  PubMed  CAS  Google Scholar 

  24. Grinberg M, Schwarz M, Zaltsman Y, Eini T, Niv H et al (2005) Mitochondrial carrier homolog 2 is a target of tBID in cells signaled to die by tumor necrosis factor alpha. Mol Cell Biol 25:4579–4590

    Article  PubMed  CAS  Google Scholar 

  25. Picault N, Hodges M, Palmieri L, Palmieri F (2004) The growing family of mitochondrial carriers in Arabidopsis. Trends Plant Sci 9:138–146

    Article  PubMed  CAS  Google Scholar 

  26. Laloi M (1999) Plant mitochondrial carriers: an overview. Cell Mol Life Sci 56:918–944

    Article  PubMed  CAS  Google Scholar 

  27. Millar AH, Heazlewood JL (2003) Genomic and proteomic analysis of mitochondrial carrier proteins in Arabidopsis. Plant Physiol 131:443–453

    Article  PubMed  CAS  Google Scholar 

  28. van Roermund CW, Drissen R, van Den Berg M, Ijlst L, Hettema EH et al (2001) Identification of a peroxisomal ATP carrier required for medium-chain fatty acid beta-oxidation and normal peroxisome proliferation in Saccharomyces cerevisiae. Mol Cell Biol 21:4321–4329

    Article  PubMed  Google Scholar 

  29. Voncken F, Boxma B, Tjaden J, Akhmanova A, Huynen M et al (2002) Multiple origins of hydrogenosomes: functional and phylogenetic evidence from the ADP/ATP carrier of the anaerobic chytrid Neocallimastix sp. Mol Microbiol 44:1441–1454

    Article  PubMed  CAS  Google Scholar 

  30. Koshiba T, Yasukawa K, Yanagi Y, Kawabata S (2011) Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci Signal 4:ra7

    Article  PubMed  Google Scholar 

  31. Colasante C, Pena Diaz P, Clayton C, Voncken F (2009) Mitochondrial carrier family inventory of Trypanosoma brucei brucei: identification, expression and subcellular localisation. Mol Biochem Parasitol 167:104–117

    Article  PubMed  CAS  Google Scholar 

  32. Hu X, Chen L, Xiang X, Yang R, Yu S et al (2012) Proteomic analysis of peritrophic membrane (PM) from the midgut of fifth-instar larvae, Bombyx mori. Mol Biol Rep 39:3427–3434

    Article  PubMed  CAS  Google Scholar 

  33. Letunic I, Doerks T, Bork P (2012) SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 40:D302–D305

    Article  PubMed  CAS  Google Scholar 

  34. Campanella JJ, Bitincka L, Smalley J (2003) MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinformatics 4:29

    Article  PubMed  Google Scholar 

  35. Corpet F (1988) Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890

    Article  PubMed  CAS  Google Scholar 

  36. Hansen JE, Lund O, Tolstrup N, Gooley AA, Williams KL et al (1998) NetOglyc: prediction of mucin type O-glycosylation sites based on sequence context and surface accessibility. Glycoconj J 15:115–130

    Article  PubMed  CAS  Google Scholar 

  37. Cao CLX, Zhao N, Yao H, Wu X (2006) Development of a rapid and efficient BmNPV baculovirus expression system for application in mulberry silkworm, Bombyx mori. Curr Sci 91:1692–1697

    CAS  Google Scholar 

  38. Wang P, Granados RR (2003) Rapid and efficient isolation of highly specific antibodies from an antiserum against a pool of proteins. Biotech Histochem 78:201–205

    Article  PubMed  CAS  Google Scholar 

  39. Ferreira AH, Cristofoletti PT, Lorenzini DM, Guerra LO, Paiva PB et al (2007) Identification of midgut microvillar proteins from Tenebrio molitor and Spodoptera frugiperda by cDNA library screenings with antibodies. J Insect Physiol 53:1112–1124

    Article  PubMed  CAS  Google Scholar 

  40. Kovalick GE, Schreiber MC, Dickason AK, Cunningham RA (1998) Structure and expression of the antigen 5-related gene of Drosophila melanogaster. Insect Biochem Mol Biol 28:491–500

    Article  PubMed  CAS  Google Scholar 

  41. Toprak U, Baldwin D, Erlandson M, Gillott C, Hou X et al (2008) A chitin deacetylase and putative insect intestinal lipases are components of the Mamestra configurata (Lepidoptera: Noctuidae) peritrophic matrix. Insect Mol Biol 17:573–585

    Article  PubMed  CAS  Google Scholar 

  42. Ferreira AH, Cristofoletti PT, Pimenta DC, Ribeiro AF, Terra WR et al (2008) Structure, processing and midgut secretion of putative peritrophic membrane ancillary protein (PMAP) from Tenebrio molitor larvae. Insect Biochem Mol Biol 38:233–243

    Article  PubMed  CAS  Google Scholar 

  43. Van den Steen P, Rudd PM, Dwek RA, Opdenakker G (1998) Concepts and principles of O-linked glycosylation. Crit Rev Biochem Mol Biol 33:151–208

    Article  PubMed  Google Scholar 

  44. Van Klinken BJ, Dekker J, Buller HA, Einerhand AW (1995) Mucin gene structure and expression: protection vs. adhesion. Am J Physiol 269:G613–G627

    PubMed  Google Scholar 

  45. Wang P, Granados RR (1997) Molecular cloning and sequencing of a novel invertebrate intestinal mucin cDNA. J Biol Chem 272:16663–16669

    Article  PubMed  CAS  Google Scholar 

  46. Edwards MJ, Jacobs-Lorena M (2000) Permeability and disruption of the peritrophic matrix and caecal membrane from Aedes aegypti and Anopheles gambiae mosquito larvae. J Insect Physiol 46:1313–1320

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Basic Research Program of China (Grant No. 2012CB114600) and Natural Scientific Foundation of China (31272506).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 24 kb)

Supplementary material 2 (TIFF 1009 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Chen, L., Yang, R. et al. Molecular characterization of a peritrophic membrane protein from the silkworm, Bombyx mori . Mol Biol Rep 40, 1087–1095 (2013). https://doi.org/10.1007/s11033-012-2151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2151-5

Keywords

Navigation