Skip to main content
Log in

Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-β1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

We studied molecular mechanism of Cistanches Herba aqueous extract (CHAE) in ovariectomized (OVX) rats, as an experimental model of postmenopausal osteoporosis. Female rats were either sham-operated or bilaterally OVX; and at 60 days postoperatively. The OVX group (n = 8) received an ovariectomy and treatment with normal saline for 90 days commencing from 20th post ovariectomy day. The ovariectomized +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy and were treated with Cistanches Herba aqueous extract of 100 mg/kg body weight daily for 90 days commencing from 22nd post ovariectomy day. The ovariectomy +CHAE (OVX + CHAE) group (n = 8) received an ovariectomy, and were treated with the of 200 mg/kg body weight daily for 90 days commencing from 20th post ovariectomy day. Serum BGP and TRAP, E2, FSH and LH level, bone marrow Smad1, Smad5, TGF-β1 and TIEG1 mRNA expression levels were examined. Results showed that serum BGP and TRAP, FSH and LH levels were significantly increased, whereas E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels were significantly decreased in OVX rats compared to sham rats. 90 days of CHAE treatment could significantly decrease serum BGP and TRAP, FSH and LH levels, and increase E2, Smad1, Smad5, TGF-β1 and TIEG1 mRNA and proteins expression levels in OVX rats. It can be concluded that CHAE play its protective effect against OVX-induced bone degeneration partly by regulating some bone metabolism related genes, e.g. Smad1, Smad5, TGF-β1 and TIEG1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Frost HM (1997) Defining osteopenias and osteoporoses: another view (with insights from a new paradigm). Bone 20:385–391

    Article  PubMed  CAS  Google Scholar 

  2. Marcus R, Feldman D, Kelsey J (1996) Osteoporosis. Academic Press, San Diego

    Google Scholar 

  3. Ross PD, Davis JW, Vogel JM, Wasnich RD (1990) A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 46:149–161

    Article  PubMed  CAS  Google Scholar 

  4. Dawson HB (1991) Calcium supplementation and bone loss: a review of controlled clinical trials. Am J Clin Nutr 54:274S–280S

    Google Scholar 

  5. Hannan MT, Felson DT, Anderson JJ (1992) Bone mineral density in elderly men and women, “results from the Framingham osteoporosis study”. J Bone Miner Res 7:547–553

    Article  PubMed  CAS  Google Scholar 

  6. Mosekilde L (1989) Sex difference in age-related loss of vertebral trabecular bone mass and structure—biomechanical consequences. Bone 10:425–432

    Article  PubMed  CAS  Google Scholar 

  7. Mosekilde L, Mosekilde L, Danielsen CC (1987) Biomechanical competence of vertebral trabecular bone in relation to ash density and age in normal individuals. Bone 8:79–85

    Article  PubMed  CAS  Google Scholar 

  8. Ross PD, Davis JW, Epstein RS, Wasnich RD (1991) Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med 114:919–923

    PubMed  CAS  Google Scholar 

  9. Miller LC, Weaver DS, McAlister JA, Koritnik DR (1986) Effects of ovariectomy on vertebral bone in the cynomolgus monkey (Macaca fascicularis). Calcif Tissue Int 38:62–65

    Article  PubMed  CAS  Google Scholar 

  10. Mann DR, Gould KG, Collins DC (1990) Potential primate model for bone loss resulting from medical oophorectomy or menopause. J Clin Endocrinol Metab 71:105–110

    Article  PubMed  CAS  Google Scholar 

  11. Wang XW, Wang XF, Wu LY (2002) Improvement of rememberance of mice of phenylethanoid glycosides of Cistanche deserticola. Rep Chin Pharm 19:41–42

    Google Scholar 

  12. Xie JH, Wu CF (1993) Effect of ethanolic extract of Cistanche deserticola on the contents of monoamine neurotransmitters in rat brain. Zhongcaoyao 24:417–419

    Google Scholar 

  13. Li LL, Wang XW, Wang XF (1997) Antilipid peroxidation and antiradiative action of glycosides in Herba Cistanches. China J Chin Mater Med 22(6):364–367

    CAS  Google Scholar 

  14. Shahat AA, Nazif NM, Abousetta LM, Ibrahim NA, Cos P, Van Miert S, Pieters L, Vlietinck AJ (2005) Phytochemical investigation and antioxidant activity of Duranta repens. Phyther Res 19(12):1071–1073

    Article  CAS  Google Scholar 

  15. Gao J, Igarashi K, Nukina M (2000) Three new phenylethanoid glycosides from Caryopteris incana and their antioxidative activity. Chem Pharm Bull 48(7):1075–1078

    Article  PubMed  CAS  Google Scholar 

  16. Kyriakopoulou I, Magiatis P, Skaltsounis AL, Aligiannis N, Harvala C (2001) Samioside, a new phenylethanoid glycoside with free-radical scavenging and antimicrobial activities from Phlomis samia. J Nat Prod 64(8):1095–1097

    Article  PubMed  CAS  Google Scholar 

  17. Deng M, Zhao JY, Ju XD, Tu PF, Jiang Y, Li ZB (2004) Protective effect of tubuloside B on TNF alpha-induced apoptosis in neuronal cells. Acta Pharmacol Sin 25:1276–1284

    PubMed  CAS  Google Scholar 

  18. Geng XC, Song LW, Pu XP, Tu PF (2004) Neuroprotective effects of phenylethanoid glycosides from Cistanches salsa against 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) induced dopaminergic toxicity in C57 mice. Biol Pharm Bull 27:797–801

    Article  PubMed  CAS  Google Scholar 

  19. He W, Shu X, Zong G, Shi M, Xiong Y, Chen M (1996) Kidney reinforcing and yang supporting action of Cistanche deserticola Y. C. Ma before and after preparation. Zhongguo Zhongyao Zazhi 21(9):534–575

    PubMed  CAS  Google Scholar 

  20. Shen LZ, Zhong XY, Wang SX (2001) Effect of Cistanche deserticola on normal and deficiency Shen-yang rats. Zhongyao Yaoli Yu Linchuang 17(1):17–18

    Google Scholar 

  21. Liang HD, Yu F, Tong ZH, Huang ZG (2011) Effect of Cistanches Herba aqueous extract on bone loss in ovariectomized rat. Int J Mol Sci 12(8):5060–5069

    Article  PubMed  CAS  Google Scholar 

  22. Takara K, Ohnishi N, Horibe S, Yokoyama T (2003) Expression profiles of drug-metabolizing enzyme CYP3A and drug efflux transporter multidrug resistance 1 subfamily mRNAS in small intestine. Drug Metab Dispos 31:1235–1239

    Article  PubMed  CAS  Google Scholar 

  23. Renart J, Reiser J, Stark GR (1979) Transfer of proteins from gels to diazobenzyloxymethyl-paper and detection with antisera: a method for studying antibody specificity and antigen structure. Proc Natl Acad Sci USA 76(7):3116–3120

    Article  PubMed  CAS  Google Scholar 

  24. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: report of a WHO study group. WHO technical report series No. 843, World Health Organization, Geneva

  25. Albright F, Smith PH, Richardson AM (1941) Postmenopausal osteoporosis. JAMA 116:2465–2474

    Article  Google Scholar 

  26. Simoni M, Gromoll J, Nieschlag E (1997) The follicle-stimulating hormone receptor: biochemistry, molecular biology, physiology, and pathophysiology. Endocr Rev 18:739–773

    Article  PubMed  CAS  Google Scholar 

  27. Lenton EA, Sexton L, Lee S, Cooke ID (1988) Progressive changes in LH and FSH and LH: FSH ratio in women throughout reproductive life. Maturitas 10:35–43

    Article  PubMed  CAS  Google Scholar 

  28. Robertson DM, Hale GE, Fraser IS, Hughes CL, Burger HG (2008) A proposed classification system for menstrual cycles in the menopause transition based on changes in serum hormone profiles. Menopause 15:1139–1144

    Article  PubMed  Google Scholar 

  29. Sherman BM, Korenman SG (1975) Hormonal characteristics of the human menstrual cycle throughout reproductive life. J Clin Invest 55:699–706

    Article  PubMed  CAS  Google Scholar 

  30. Klein NA, Illingworth PJ, Groome NP, McNeilly AS, Battaglia DE, Soules MR (1996) Decreased inhibin B secretion is associated with the monotropic FSH rise in older, ovulatory women: a study of serum and follicular fluid levels of dimeric inhibin A and B in spontaneous menstrual cycles. J Clin Endocrinol Metab 81:2742–2745

    Article  PubMed  CAS  Google Scholar 

  31. Reame NE, Wyman TL, Phillips DJ, de Kretser DM, Padmanabhan V (1998) Net increase in stimulatory input resulting from a decrease in inhibin B and an increase in activin A may contribute in part to the rise in follicular phase follicle-stimulating hormone of aging cycling women. J Clin Endocrinol Metab 83:3302–3307

    Article  PubMed  CAS  Google Scholar 

  32. Robertson DM, Hale GE, Jolley D, Fraser IS, Hughes CL, Burger HG (2009) Interrelationships between ovarian and pituitary hormones in ovulatory menstrual cycles across reproductive age. J Clin Endocrinol Metab 94:138–144

    Article  PubMed  CAS  Google Scholar 

  33. Lee SJ, Lenton EA, Sexton L, Cooke ID (1988) The effect of age on the cyclical patterns of plasma LH, FSH, oestradiol and progesterone in women with regular menstrual cycles. Hum Reprod 3:851–855

    PubMed  CAS  Google Scholar 

  34. Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB, Zhou H, Zallone A, Sairam MR, Kumar TR, Bo W, Braun J, Cardoso-Landa L, Schaffler MB, Moonga BS, Blair HC, Zaidi M (2006) FSH directly regulates bone mass. Cell 125:247–260

    Article  PubMed  CAS  Google Scholar 

  35. Goss PE, Qi S, Cheung AM, Hu H, Mendes M, Pritzker KP (2004) Effects of the steroidal aromatase inhibitor exemestane and the nonsteroidal aromatase inhibitor letrozole on bone and lipid metabolism in ovariectomized rats. Clin Cancer Res 10(17):5717–5723

    Article  PubMed  CAS  Google Scholar 

  36. Grassi F, Fan X, Rahnert J, Weitzmann MN, Pacifici R, Nanes MS, Rubin J (2006) Bone re/modeling is more dynamic in the endothelial nitric oxide synthase(−/−) mouse. Endocrinology 147(9):4392–4399

    Article  PubMed  CAS  Google Scholar 

  37. Hu PP, Datto MB, Wang XF (1998) Molecular mechanisms of transforming growth factor-beta signaling. Endocr Rev 19:349–363

    Article  PubMed  CAS  Google Scholar 

  38. Massague J (1998) TGF-beta signal transduction. Ann Rev Biochem 67:753–791

    Article  PubMed  CAS  Google Scholar 

  39. Massague J, Blain SW, Lo RS (2000) TGF-beta signaling in growth control, cancer, and heritable disorders. Cell 103:295–309

    Article  PubMed  CAS  Google Scholar 

  40. Attisano L, Wrana J (2000) Smads as transcriptional co-modulators. Curr Opin Cell Biol 12:235–243

    Article  PubMed  CAS  Google Scholar 

  41. Miyazono K (2000) TGF-beta signaling by Smad proteins. Cytokine Growth Factor Rev 11:15–22

    Article  PubMed  CAS  Google Scholar 

  42. Retting KN, Song B, Yoon BS, Lyons KM (2009) BMP canonical Smad signaling through Smad1 and Smad5 is required for endochondral bone formation. Development 136(7):1093–1104

    Article  PubMed  CAS  Google Scholar 

  43. Massagué J (2000) How cells read TGF-β signals. Nat Rev Mol Cell Biol 1:169–178

    Article  PubMed  Google Scholar 

  44. Schluesener HJ, Meyermann R (1995) Immunolocalization of BMP-6, a novel TGF-β-related cytokine, in normal and atherosclerotic smooth muscle cells. Atherosclerosis 113:153–156

    Article  PubMed  CAS  Google Scholar 

  45. Willette RN, Gu JL, Lysko PG, Anderson KM, Minehart H, Yue T (1999) BMP-2 gene expression and effects on human vascular smooth muscle cells. J Vasc Res 36:120–125

    Article  PubMed  CAS  Google Scholar 

  46. Glienke J, Schmitt AO, Pilarsky C, Hinzmann B, Weiss B, Rosenthal A, Thierauch KH (2000) Differential gene expression by endothelial cells in distinct angiogenic states. Eur J Biochem 267:2820–2830

    Article  PubMed  CAS  Google Scholar 

  47. Nakaoka T, Gonda K, Ogita T, Otawara-Hamamoto Y, Okabe F, Kira Y, Harii K, Miyazono K, Takuwa Y, Fujita T (1997) Inhibition of rat vascular smooth muscle proliferation in vitro and in vivo by bone morphogenetic protein-2. J Clin Invest 100:2824–2832

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Dong Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, HD., Yu, F., Tong, ZH. et al. Cistanches Herba aqueous extract affecting serum BGP and TRAP and bone marrow Smad1 mRNA, Smad5 mRNA, TGF-β1 mRNA and TIEG1 mRNA expression levels in osteoporosis disease. Mol Biol Rep 40, 757–763 (2013). https://doi.org/10.1007/s11033-012-2065-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2065-2

Keywords

Navigation