Skip to main content
Log in

Expression profile analysis of genes involved in horizontal gravitropism bending growth in the creeping shoots of ground-cover chrysanthemum by suppression subtractive hybridization

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The molecular mechanisms underlying gravitropic bending of shoots are poorly understood and how genes related with this growing progress is still unclear. To identify genes related to asymmetric growth in the creeping shoots of chrysanthemum, suppression subtractive hybridization was used to visualize differential gene expression in the upper and lower halves of creeping shoots of ground-cover chrysanthemum under gravistimulation. Sequencing of 43 selected clones produced 41 unigenes (40 singletons and 1 unigenes), which were classifiable into 9 functional categories. A notable frequency of genes involve in cell wall biosynthesis up-regulated during gravistimulation in the upper side or lower side were found, such as beta tubulin (TUB), subtilisin-like protease (SBT), Glutathione S-transferase (GST), and expensing-like protein (EXP), lipid transfer proteins (LTPs), glycine-rich protein (GRP) and membrane proteins. Our findings also highlighted the function of some metal transporter during asymmetric growth, including the boron transporter (BT) and ZIP transporter (ZT), which were thought primarily for maintaining the integrity of cell walls and played important roles in cellulose biosynthesis. CmTUB (beta tubulin) was cloned, and the expression profile and phylogeny was examined, because the cytoskeleton of plant cells involved in the plant gravitropic bending growth is well known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stanga J, Baldwin K, Masson PH (2009) Joining forces: the interface of gravitropism and plastid protein import. Plant Signal Behav 4:933–941

    Article  PubMed  CAS  Google Scholar 

  2. Fukaki H, Fujisawa H, Tasaka M (1996) How do plant shoots bend up? The initial step to elucidate the molecular mechanisms of shoot gravitropism using Arabidopsis thaliana. J Plant Res 109:129–137

    Article  PubMed  CAS  Google Scholar 

  3. Morita MT, Tasaka M (2004) Gravity sensing and signaling. Curr Opin Plant Biol 7:712–718

    Article  PubMed  CAS  Google Scholar 

  4. Ranjeva R, Graziana A, Mazars C (1999) Plant graviperception and gravitropism: a newcomer’s view. FASEB J 13(Suppl):S135–S141

    PubMed  CAS  Google Scholar 

  5. Chen R, Rosen E, Masson PH (1999) Gravitropism in higher plants. Plant Physiol 120:343–350

    Article  PubMed  CAS  Google Scholar 

  6. Moore I (2002) Gravitropism: lateral thinking in auxin transport. Curr Biol 12:R452–R454

    Article  PubMed  CAS  Google Scholar 

  7. Tasaka M, Kato T, Fukaki H (1999) The endodermis and shoot gravitropism. Trends Plant Sci 4:103–107

    Article  PubMed  CAS  Google Scholar 

  8. Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, Tasaka M (2002) SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell 14:33–46

    Article  PubMed  CAS  Google Scholar 

  9. Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M (2003) A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci USA 100:8589–8594

    Article  PubMed  CAS  Google Scholar 

  10. Chen F, Fang W, Zhao H, Guan Z, Xu G (2005) New varieties of chrysanthemum-ground-cover varieties. Acta Hortic Sin 32:1167

    CAS  Google Scholar 

  11. Zhang SM, Chen SM, Chen F, Teng NJ, Fang WM, Guan ZY (2008) Anatomical structure and gravitropic response of the creeping shoots of ground-cover chrysanthemum ‘Yuhuajinhua’. Plant Growth Regul 56:141–150

    Article  CAS  Google Scholar 

  12. Zhang S, Chen S, Chen F, Jiang B (2011) The role of ionic calcium in the gravitropic response of a creeping chrysanthemum cultivar. Russ J Plant Physiol 58:696–702

    Article  CAS  Google Scholar 

  13. Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44:463–472

    Article  PubMed  CAS  Google Scholar 

  14. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD (1996) Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci USA 93:6025–6030

    Article  PubMed  CAS  Google Scholar 

  15. Hu L, Cui D, Neill S, Cai W (2007) OsEXPA4 and OsRWC3 are involved in asymmetric growth during gravitropic bending of rice leaf sheath bases. Physiol Plantarum 130:560–571

    Article  CAS  Google Scholar 

  16. Blancaflor EB (2002) The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul 21:120–136

    Article  PubMed  CAS  Google Scholar 

  17. Oztetik E (2008) A tale of plant Glutathione S-transferases: since 1970. Bot Rev 74:419–437

    Article  Google Scholar 

  18. McGonigle B, Keeler SJ, Lau SM, Koeppe MK, O’Keefe DP (2000) A genomics approach to the comprehensive analysis of the glutathione S-transferase gene family in soybean and maize. Plant Physiol 124:1105–1120

    Article  PubMed  CAS  Google Scholar 

  19. Gong H, Jiao Y, Hu WW, Pua EC (2005) Expression of glutathione-S-transferase and its role in plant growth and development in vivo and shoot morphogenesis in vitro. Plant Mol Biol 57:53–66

    Article  PubMed  CAS  Google Scholar 

  20. Moons A (2005) Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs). Vitam Horm 72:155–202

    Article  PubMed  CAS  Google Scholar 

  21. Gonneau M, Mornet R, Laloue M (1998) A Nicotiana plumbaginifolia protein labeled with an azido cytokinin agonist is a glutathione S-transferase. Physiol Plantarum 103:114–124

    Article  CAS  Google Scholar 

  22. Moons A (2003) Osgstu3 and osgtu4, encoding tau class glutathione S-transferases, are heavy metal- and hypoxic stress-induced and differentially salt stress-responsive in rice roots. FEBS Lett 553:427–432

    Article  PubMed  CAS  Google Scholar 

  23. Smith AP, Nourizadeh SD, Peer WA, Xu JH, Bandyopadhyay A, Murphy AS, Goldsbrough PB (2003) Arabidopsis AtGSTF2 is regulated by ethylene and auxin, and encodes a glutathione S-transferase that interacts with flavonoids. Plant J 36:433–442

    Article  PubMed  CAS  Google Scholar 

  24. Jiang HW, Liu MJ, Chen IC, Huang CH, Chao LY, Hsieh HL (2010) A glutathione S-transferase regulated by light and hormones participates in the modulation of Arabidopsis seedling development. Plant Physiol 154:1646–1658

    Article  PubMed  CAS  Google Scholar 

  25. McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    PubMed  CAS  Google Scholar 

  26. Sloan J, Backhaus A, Malinowski R, McQueen-Mason S, Fleming AJ (2009) Phased control of expansin activity during leaf development identifies a sensitivity window for expansin-mediated induction of leaf growth. Plant Physiol 151:1844–1854

    Article  PubMed  CAS  Google Scholar 

  27. Mcqueenmason S, Cosgrove DJ (1994) Disruption of hydrogen-bonding between plant-cell wall polymers by proteins that induce wall extension. Proc Natl Acad Sci USA 91:6574–6578

    Article  CAS  Google Scholar 

  28. Srivastava R, Liu JX, Howell SH (2008) Proteolytic processing of a precursor protein for a growth-promoting peptide by a subtilisin serine protease in Arabidopsis. Plant J 56:219–227

    Article  PubMed  CAS  Google Scholar 

  29. Che P, Lall S, Nettleton D, Howell SH (2006) Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 141:620–637

    Article  PubMed  CAS  Google Scholar 

  30. Liu JX, Srivastava R, Howell S (2009) Overexpression of an Arabidopsis gene encoding a subtilase (AtSBT5.4) produces a clavata-like phenotype. Planta 230:687–697

    Article  PubMed  CAS  Google Scholar 

  31. Nick P (2007) The plant cytoskeleton - new jobs for a versatile network. Protoplasma 230:125–127

    Article  PubMed  CAS  Google Scholar 

  32. Koo BS, Kalme S, Yeo SH, Lee SJ, Yoon MY (2009) Molecular cloning and biochemical characterization of alpha- and beta-tubulin from potato plants (Solanum tuberosum L.). Plant Physiol Biochem 47:761–768

    Article  PubMed  CAS  Google Scholar 

  33. Parrotta L, Cai G, Cresti M (2010) Changes in the accumulation of alpha- and beta-tubulin during bud development in Vitis vinifera L. Planta 231:277–291

    Article  PubMed  CAS  Google Scholar 

  34. Liu B, Joshi HC, Wilson TJ, Silflow CD, Palevitz BA, Snustad DP (1994) gamma-Tubulin in Arabidopsis: gene sequence, immunoblot, and immunofluorescence studies. Plant Cell 6:303–314

    PubMed  CAS  Google Scholar 

  35. Spokevicius AV, Southerton SG, MacMillan CP, Qiu D, Gan S, Tibbits JF, Moran GF, Bossinger G (2007) beta-tubulin affects cellulose microfibril orientation in plant secondary fibre cell walls. Plant J 51:717–726

    Article  PubMed  CAS  Google Scholar 

  36. Zhang ZQ, Friedman H, Meir S, Rosenberger I, Halevy AH, Philosoph-Hadas S (2008) Microtubule reorientation in shoots precedes bending during the gravitropic response of cut snapdragon spikes. J Plant Physiol 165:289–296

    Article  PubMed  CAS  Google Scholar 

  37. Yang G, Jan A, Komatsu S (2007) Functional analysis of OsTUB8, an anther-specific β-tubulin in rice. Plant Sci 172:832–838

    Article  CAS  Google Scholar 

  38. Zhao SA, Yang K, Ma Q, Wang Q, Wang XD, Li YH (2009) Plant polar growth in tobacco disturbed by gamma-tubulin gene silencing. Prog Nat Sci 19:685–691

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Ph.D. Programs Foundation of Ministry of Education of China (No. 20100097110002); the Program for New Century Excellent Talents in University of Chinese Ministry of Education (Grant No. NCET-10-0492); the Fundamental Research Funds for the Central Universities (KYZ201147); Youth Science and Technology Innovation Fund (KJ2011009); 863 project by Ministry of Science and Technology of China (2011AA100208) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Chen.

Additional information

Shengjun Xia and Yu Chen equally contributed to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, S., Chen, Y., Jiang, J. et al. Expression profile analysis of genes involved in horizontal gravitropism bending growth in the creeping shoots of ground-cover chrysanthemum by suppression subtractive hybridization. Mol Biol Rep 40, 237–246 (2013). https://doi.org/10.1007/s11033-012-2054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2054-5

Keywords

Navigation