Skip to main content
Log in

Regulation of the major vacuolar Ca2+ transporter genes, by intercellular Ca2+ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Calcium is an essential plant macronutrient that has unique structural and signaling roles related to tip-burn disorder in Brassica spp. crops. For two types of cabbage inbred lines, tip-burn susceptible and resistant, we measured and compared major macronutrient cations, including Ca2+, in leaves. In both lines, Ca2+, Mg2+, Na+, and K+, accumulated more in leaf base than in leaf apex. Ca2+ and K+ were >2 times more abundant in the tip-burn resistant line, while Na+ was higher in the susceptible line. Ca2+ differences between the two lines resulted from differential accumulation of calcium into cell vacuoles. We profiled major vacuolar Ca2+ transporters, in both cabbage lines, by growth time and intercellular Ca2+ concentration. Expression pattern of several Ca2+ transporter genes differed between tip-burn susceptible and resistant lines by growth time points. We also identified promoter regions of the major Ca2+ vacuole transporter genes, CAX1, ACA4, and ACA11, which displayed hormonal, light and defense-related cis-acting regulatory elements. Finally, transporter genes in the two cabbage lines responded differently to abiotic stresses, demonstrating diversity in gene regulation among orthologous genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAX:

Ca2+/H+ antiporters

ACA:

Ca2+-ATPase

Bo :

Brassica oleracea

At :

Arabidopsis thaliana

LA:

Leaf apex

LM:

Middle of leaf base

LB:

Leaf base

References

  1. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92(4):487–511

    Article  PubMed  CAS  Google Scholar 

  2. Dayod M, Tyerman SD, Leigh RA, Gilliham M (2010) Calcium storage in plants and the implications for calcium biofortification. Protoplasma 247(3–4):215–231

    Article  PubMed  CAS  Google Scholar 

  3. Conn S, Gilliham M (2010) Comparative physiology of elemental distributions in plants. Ann Bot 105(7):1081–1102

    Article  PubMed  CAS  Google Scholar 

  4. Bush DS (1995) Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol Plant Mol Biol 46:95–122

    Article  CAS  Google Scholar 

  5. Marschner H (1995) Adaptation of plants to adverse chemical soil conditions. In: Marschner H (ed) Mineral nutrition of higher plants. Academic Press, London, pp 596–681

    Chapter  Google Scholar 

  6. McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181(2):275–294

    Article  PubMed  CAS  Google Scholar 

  7. Dodd AN, Kudla J, Sanders D (2010) The language of calcium signaling. Annu Rev Plant Biol 61:593–620

    Article  PubMed  CAS  Google Scholar 

  8. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14(Suppl):S401–S417

    PubMed  CAS  Google Scholar 

  9. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4(7):517–529

    Article  PubMed  CAS  Google Scholar 

  10. Hetherington AM, Brownlee C (2004) The generation of Ca2+ signals in plants. Annu Rev Plant Biol 55:401–427

    Article  PubMed  CAS  Google Scholar 

  11. Geisler M, Axelsen KB, Harper JF, Palmgren MG (2000) Molecular aspects of higher plant P-type Ca(2+)-ATPases. Biochim Biophys Acta 1465(1–2):52–78

    PubMed  CAS  Google Scholar 

  12. Conn SJ, Gilliham M, Athman A, Schreiber AW, Baumann U, Moller I, Cheng NH, Stancombe MA, Hirschi KD, Webb AAR, Burton R, Kaiser BN, Tyerman SD, Leigh RA (2011) Cell-specific vacuolar calcium storage mediated by CAX1 regulates apoplastic calcium concentration, gas exchange, and plant productivity in Arabidopsis. Plant Cell 23(1):240–257

    Article  PubMed  CAS  Google Scholar 

  13. Mäser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA, Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126(4):1646–1667

    Article  PubMed  Google Scholar 

  14. Pittman JK, Hirschi KD (2001) Regulation of CAX1, an Arabidopsis Ca2+/H+ antiporter. Identification of an N-terminal autoinhibitory domain. Plant Physiol 127(3):1020–1029

    Article  PubMed  CAS  Google Scholar 

  15. Pittman JK, Shigaki T, Cheng NH, Hirschi KD (2002) Mechanism of N-terminal autoinhibition in the Arabidopsis Ca2+/H+ antiporter CAX1. J Biol Chem 277(29):26452–26459

    Article  PubMed  CAS  Google Scholar 

  16. Hirschi KD (1999) Expression of Arabidopsis CAX1 in tobacco: altered calcium homeostasis and increased stress sensitivity. Plant Cell 11(11):2113–2122

    PubMed  CAS  Google Scholar 

  17. Catala R, Santos E, Alonso JM, Ecker JR, Martinez-Zapater JM, Salinas J (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15(12):2940–2951

    Article  PubMed  CAS  Google Scholar 

  18. Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15(2):347–364

    Article  PubMed  CAS  Google Scholar 

  19. Mei H, Zhao J, Pittman JK, Lachmansingh J, Park S, Hirschi KD (2007) In planta regulation of the Arabidopsis Ca2+/H+ antiporter CAX1. J Exp Bot 58(12):3419–3427

    Article  PubMed  CAS  Google Scholar 

  20. Zhao J, Barkla BJ, Marshall J, Pittman JK, Hirschi KD (2008) The Arabidopsis cax3 mutants display altered salt tolerance, pH sensitivity and reduced plasma membrane H+-ATPase activity. Planta 227(3):659–669

    Article  PubMed  CAS  Google Scholar 

  21. Hirschi KD, Zhen RG, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci USA 93(16):8782–8786

    Article  PubMed  CAS  Google Scholar 

  22. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco: altered metal accumulation and increased manganese tolerance. Plant Physiol 124(1):125–133

    Article  PubMed  CAS  Google Scholar 

  23. Shigaki T, Pittman JK, Hirschi KD (2003) Manganese specificity determinants in the Arabidopsis metal/H+ antiporter CAX2. J Biol Chem 278(8):6610–6617

    Article  PubMed  CAS  Google Scholar 

  24. Pittman JK, Shigaki T, Marshall JL, Morris JL, Cheng NH, Hirschi KD (2004) Functional and regulatory analysis of the Arabidopsis thaliana CAX2 cation transporter. Plant Mol Biol 56(6):959–971

    Article  PubMed  CAS  Google Scholar 

  25. Koren’kov V, Park S, Cheng NH, Sreevidya C, Lachmansingh J, Morris J, Hirschi KD, Wagner GJ (2007) Enhanced Cd2+-selective root-tonoplast transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225(2):403–411

    Article  PubMed  Google Scholar 

  26. Cheng NH, Pittman JK, Shigaki T, Hirschi KD (2002) Characterization of CAX4, an Arabidopsis H+/cation antiporter. Plant Physiol 128(4):1245–1254

    Article  PubMed  CAS  Google Scholar 

  27. Edmond C, Shigaki T, Ewert S, Nelson MD, Connorton JM, Chalova V, Noordally Z, Pittman JK (2009) Comparative analysis of CAX2-like cation transporters indicates functional and regulatory diversity. Biochem J 418(1):145–154

    Article  PubMed  CAS  Google Scholar 

  28. Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis. Plant Physiol 132(2):618–628

    Article  PubMed  CAS  Google Scholar 

  29. Geisler M, Frangne N, Gomès E, Martinoia E, Palmgren MG (2000) The ACA4 gene of Arabidopsis encodes a vacuolar membrane calcium pump that improves salt tolerance in yeast. Plant Physiol 124(4):1814–1827

    Article  PubMed  CAS  Google Scholar 

  30. Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214(Pt2):159–173

    Article  PubMed  CAS  Google Scholar 

  31. Lee SM, Kim HS, Han HJ, Moon BC, Kim CY, Harper JF, Chung WS (2007) Identification of a calmodulin-regulated autoinhibited Ca2+-ATPase (ACA11) that is localized to vacuole membranes in Arabidopsis. FEBS Lett 581(21):3943–3949

    Article  PubMed  CAS  Google Scholar 

  32. Harper JF, Hong B, Hwang I, Guo HQ, Stoddard R, Huang JF, Palmgren MG, Sze H (1998) A novel calmodulin-regulated Ca2+-ATPase (ACA2) from Arabidopsis with an N-terminal autoinhibitory domain. J Biol Chem 273(2):1099–1106

    Article  PubMed  CAS  Google Scholar 

  33. Hwang I, Sze H, Harper JF (2000) A calcium-dependent protein kinase can inhibit a calmodulin-stimulated Ca2+ pump (ACA2) located in the endoplasmic reticulum of Arabidopsis. Proc Natl Acad Sci USA 97(11):6224–6229

    Article  PubMed  CAS  Google Scholar 

  34. Song WY, Choi KS, de Alexis A, Martinoia E, Lee Y (2011) Brassica juncea plant cadmium resistance 1 protein (BjPCR1) facilitates the radial transport of calcium in the root. Proc Natl Acad Sci USA 108(49):19808–19813

    Article  PubMed  CAS  Google Scholar 

  35. Aloni B, Pashkar T, Libel R (1986) The possible involvement of gibberellins and calcium in tipburn of Chinese cabbage: study of intact plants and detached leaves. Plant Growth Regul 4(1):3–11

    Article  CAS  Google Scholar 

  36. Saure MC (1998) Causes of the tipburn disorder in leaves of vegetables. Sci Hortic 76(3–4):131–147

    Article  CAS  Google Scholar 

  37. Kang SG, Jin JB, Piao HL, Pih KT, Jang HJ, Lim JH, Hwang I (1998) Molecular cloning of an Arabidopsis cDNA encoding a dynamic-like protein that is localized to plastids. Plant Mol Biol 38(3):437–447

    Article  PubMed  CAS  Google Scholar 

  38. Zhang WH, Rengel Z, Kuo J (1998) Determination of intracellular Ca2+ in cells of intact wheat roots: loading of acetoxymethyl ester of Fluo-3 under low temperature. Plant J 15(1):147–151

    Article  Google Scholar 

  39. Sukumvanich P, DesMarais V, Sarmiento CV, Wang Y, Ichetovkin I, Mouneimne G, Almo S, Condeelis J (2004) Cellular localization of activated N-WASP using a conformation-sensitive antibody. Cell Motil Cytoskeleton 59(2):141–152

    Article  PubMed  CAS  Google Scholar 

  40. Shear CB (1975) Calcium-related disorders of fruits and vegetables. Hort Sci 10:361–365

    CAS  Google Scholar 

  41. Chang YC, Miller WB (2005) The development of upper leaf necrosis in Lilium ‘Star Gazer’. J Am Soc Hort Sci 130(5):759–766

    Google Scholar 

  42. Al-Karaki GN (1997) Barley response to salt stress at varied levels of phosphorous. J Plant Nutr 20:1635–1643

    Article  CAS  Google Scholar 

  43. Datnoff LE, Elmer WH, Huber D (2007) Mineral Nutrition and Plant Disease. American Phytopathological Society, St. Paul, p 278

    Google Scholar 

  44. Flowers TJ, Läuchli A (1983) Sodium versus potassium: substitution and compartmentation. In: Läuchli A, Bieleski RL (eds) Inorganic plant nutrition. Springer, Berlin, pp 651–681

    Google Scholar 

  45. Gierth M, Mäser P, Schroeder JI (2005) The potassium transporter AtHAK5 functions in K+ deprivation-induced high-affinity K+ uptake and AKT1 K+ channel contribution to K+ uptake kinetics in Arabidopsis roots. Plant Physiol 137(3):1105–1114

    Article  PubMed  CAS  Google Scholar 

  46. Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15(3):309–323

    Article  PubMed  CAS  Google Scholar 

  47. Gums JG (2004) Magnesium in cardiovascular and other disorders. Am J Health Syst Pharm 61(15):1569–1576

    PubMed  CAS  Google Scholar 

  48. Subbaraoa GV, Itoa O, Berryb WL, Wheelerc RM (2003) Sodium-A functional plant nutrient. Crit Rev Plant Sci 22(5):391–416

    Google Scholar 

  49. Badr-uz-Zaman, Salim M, Asghar R (2010) Role of Ca2+ on growth of Brassica campestris L. & B. juncea (L.) Czern & Coss under Na+ Stress. J Integr Plant Biol 52(6):549–555

    Article  PubMed  CAS  Google Scholar 

  50. Saghir A, Khan NO, Igbal MZ, Hussain A, Hassan M (2002) Salt tolerance of cotton (Gossypium hirsutum L.). Asian J Plant Sci 1(6):715–719

    Article  Google Scholar 

  51. Palencia P, Martineza F, Ribeiroc E, Pestanac M, Gamac F, Saavedrac T, Varennesb A, Correiac PJ (2010) Relationship between tipburn and leaf mineral composition in strawberry. Sci Hortic 126(2):242–246

    Article  CAS  Google Scholar 

  52. Leshem Y, Melamed-Book N, Cagnac O, Ronen G, Nishri Y, Solomon M, Cohen G, Levine A (2006) Suppression of Arabidopsis vesicle-SNARE expression inhibited fusion of H2O2-containing vesicles with tonoplast and increased salt tolerance. Proc Natl Acad Sci USA 103(47):18008–18013

    Article  PubMed  CAS  Google Scholar 

  53. Konsaeng S, Dell B, Rerkasem B (2005) A survey of woody tropical species for boron retranslocation. Plant Prod Sci 8:338–341

    Article  CAS  Google Scholar 

  54. Thibodeau PO, Minotti PL (1969) The influence of calcium on the development of lettuce tipburn. J Am Soc Hortic Sci 94:372–376

    CAS  Google Scholar 

  55. Collier GF, Tibbitts TW (1982) Tipburn of lettuce. Hort Rev 4:49–65

    CAS  Google Scholar 

  56. Aloni B (1986) Enhancement of leaf tipburn by restricting root growth in Chinese cabbage plants. J Hort Sci 61:509–513

    CAS  Google Scholar 

  57. Bangerth F (1979) Calcium-related physiological disorders of plants. Annu Rev Phytopathol 17:97–122

    Article  CAS  Google Scholar 

  58. Wissemeier AH (1996) Calcium-mangel bei salat (Lactuca sativa L.) und poinsettie (Euphorbia pulcherrima Willd. ex Klotzsch): einfluû von genotyp und umwelt. Verlag Ulrich E. Grauer, Stuttgart, p 299

    Google Scholar 

  59. Kerton M, Newbury HJ, Hand D, Pritchard J (2009) Accumulation of calcium in the centre of leaves of coriander (Coriandrum sativum L.) is due to an uncoupling of water and ion transport. J Exp Bot 60(1):227–235

    Article  PubMed  CAS  Google Scholar 

  60. Fricke W (2004) Solute sorting in grass leaves: the transpiration stream. Planta 219(3):507–514

    PubMed  CAS  Google Scholar 

  61. Morris L, Hawthorne KM, Hotze T, Abrams SA, Hirschi KD (2008) Nutritional impact of elevated calcium transport activity in carrots. Proc Natl Acad Sci USA 105(5):1431–1435

    Article  PubMed  CAS  Google Scholar 

  62. Park S, Elless MP, Park J, Jenkins A, Lim W, Chambers E IV, Hirschi KD (2009) Sensory analysis of calcium-biofortified lettuce. Plant Biotechnol J 7(1):106–177

    Article  PubMed  CAS  Google Scholar 

  63. Minorsky PV (1985) An heuristic hypothesis of chilling injury in plants: a role for calcium as the primary physiological transducer in injury. Plant Cell Environ 8(2):75–94

    Article  CAS  Google Scholar 

  64. Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic Ca2+. Nature 352(6335):524–526

    Article  PubMed  CAS  Google Scholar 

  65. Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324

    Article  PubMed  CAS  Google Scholar 

  66. Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11(4):691–706

    PubMed  CAS  Google Scholar 

  67. Larcher W (1995) Kalte und frost. In: Sorauer P (ed) Handbuch des Pflanzenkrankeiten, Vol 7. Berlin, pp 107–326

  68. Gong M, Li YJ, Dai X, Tian M, Li ZG (1997) Involvement of calcium and calmodulin in the acquisition of HS induced thermo tolerance in maize seedlings. J Plant Physiol 150:615–621

    Article  CAS  Google Scholar 

  69. Bradfield EG, Guttridge CG (1979) The dependence of calcium transport and leaf tipburn in strawberry on relative humidity and nutrient solution concentration. Ann Bot 43(3):363–372

    CAS  Google Scholar 

  70. Chow KK, Price TV, Hanger BC (2004) Effects of nitrogen, potassium, calcium concentration and solution temperatures on the growth and yield of strawberry cv. Redgauntlet in a nutrient film (NFT) hydroponic system. Acta Hortic 633:315–327

    CAS  Google Scholar 

  71. Lieten P (2006) Effect of K:Ca:Mg ratio on performance of ‘Elsanta’ strawberries grown on peat. Acta Hortic 708:397–400

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by grants from the Next-Generation Bio Green 21 Program (No. PJ0082002011) and Cabbage Genomics assisted breeding supporting Center (CGC) research programs and funded by Rural Development Administration and Ministry for Food, Agriculture, Forestry and Fisheries of the Korean Government, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to SeokYoon Kwon or HyeRan Kim.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, J., Park, I., Lee, ZW. et al. Regulation of the major vacuolar Ca2+ transporter genes, by intercellular Ca2+ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea . Mol Biol Rep 40, 177–188 (2013). https://doi.org/10.1007/s11033-012-2047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2047-4

Keywords

Navigation