Molecular Biology Reports

, Volume 40, Issue 1, pp 117–127 | Cite as

Cloning and characterization of two rice long-chain base kinase genes and their function in disease resistance and cell death

  • Huijuan Zhang
  • Li Li
  • Yongmei Yu
  • Jibo Mo
  • Lijun Sun
  • Bo Liu
  • Dayong Li
  • Fengming Song
Article

Abstract

Sphingolipid metabolites such as long-chain base 1-phosphates (LCBPs) have been shown to play an important role in plants; however, little is known about their function in plant disease resistance and programmed cell death (PCD). In the present study, we cloned and identified two rice long-chain base kinase (LCBK) genes (OsLCBK1 and OsLCBK2), which are involved in biosynthesis of LCBPs, and performed functional analysis in transgenic tobacco. Expression of OsLCBK1 and OsLCBK2 was induced in rice seedlings after treatments with defense signaling molecules and after infection by Magnaporthe grisea, the causal agent of blast disease. Transgenic tobacco plants overexpressing OsLCBK1 were generated and disease resistance assays indicate that the OsLCBK1-overexpressing plants showed enhanced disease resistance against Pseudmonassyringae pv. tabacci, the causal agent of wildfire disease, and tobacco mosaic virus. Expression levels of some defense-related genes were constitutively up-regulated and further induced after pathogen infection in the OsLCBK1-overexpressing plants. Treatment with fungal toxin fumonisin B1, an effective inducer of PCD in plants, resulted in reduced level of cell death in the OsLCBK1-overexpressing plants, as indicated by cell death staining, leakage of electrolyte and expression of hypersensitive response indicator genes. These data suggest that rice LCBKs, probably through regulation of endogenous LCBP level, play important roles in disease resistance response and PCD in plants.

Keywords

Rice (Oryza sativa L.) Long-chain base 1-phosphate (LCBP) Long-chain base kinase (LCBK) Transgenic tobacco Disease resistance Programmed cell death 

Abbreviations

ABA

Abscisic acid

ACC

1-Amino cyclopropane-1-carboxylic acid

BTH

Benzothidiazole

Cer

Ceramide

ET

Ethylene

FB1

Fumonisin B1

HR

Hypersensitive response

JA

Jasmonic acid

LCB

Long-chain base

LCBK

Long-chain base kinase

LCBP

Long-chain base 1-phosphate

PCD

Programed cell death

Pst

Pseudomonas syringae pv. tobacci

RT-PCR

Reverse transcriptase-polymerase chain reaction

S1P

Sphingosine-1-phosphate

SA

Salicylic acid

SphK

Sphingosine kinase

TMV

Tobacco mosaic virus

References

  1. 1.
    Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  2. 2.
    Pieterse CM, Leon-Reyes A, Van der Ent S, Van Wees SC (2009) Networking by small-molecule hormones in plant immunity. Nat Chem Biol 5(5):308–316PubMedCrossRefGoogle Scholar
  3. 3.
    Vlot AC, Dempsey DA, Klessig DF (2009) Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47:177–206PubMedCrossRefGoogle Scholar
  4. 4.
    Wang X, Devaiah SP, Zhang W, Welti R (2006) Signaling functions of phosphatidic acid. Prog Lipid Res 45(3):250–278PubMedCrossRefGoogle Scholar
  5. 5.
    Munnik T, Testerink C (2009) Plant phospholipid signaling: in a nutshell. J Lipid Res 50(Suppl):S260–S265PubMedCrossRefGoogle Scholar
  6. 6.
    Payne SG, Milstien S, Spiegel S (2002) Sphingosine-1-phosphate: dual messenger functions. FEBS Lett 531(1):54–57PubMedCrossRefGoogle Scholar
  7. 7.
    Spiegel S, Milstien S (2003) Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol 4(5):397–407PubMedCrossRefGoogle Scholar
  8. 8.
    Chalfant CE, Spiegel S (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 118(20):4605–4612PubMedCrossRefGoogle Scholar
  9. 9.
    Xiong TC, Coursol S, Grat S, Ranjeva R, Mazars C (2008) Sphingolipid metabolites selectively elicit increases in nuclear calcium concentration in cell suspension cultures and in isolated nuclei of tobacco. Cell Calcium 43(1):29–37PubMedCrossRefGoogle Scholar
  10. 10.
    Lynch DV, Chen M, Cahoon EB (2009) Lipid signaling in Arabidopsis: no sphingosine? No problem! Trends Plant Sci 14(9):463–466PubMedCrossRefGoogle Scholar
  11. 11.
    Strub GM, Maceyka M, Hait NC, Milstien S, Spiegel S (2010) Extracellular and intracellular actions of sphingosine-1-phosphate. Adv Exp Med Biol 688:141–155PubMedCrossRefGoogle Scholar
  12. 12.
    Satiat-Jeunemaitre B (2011) Sphingolipids involvement in plant endomembrane differentiation: the BY2 case. Plant J 65(6):958–971PubMedCrossRefGoogle Scholar
  13. 13.
    Aubert A, Marion J, Boulogne C, Bourge M, Abreu S, Bellec Y, Faure JD, Dutilleul C, Benhassaine-Kesri G, Demandre C, Rézé N, Launay A, Pelletier S, Renou JP, Zachowski A, Baudouin E, Guillas I (2012) Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. New Phytol 194(1):181–191CrossRefGoogle Scholar
  14. 14.
    Kawaguchi M, Imai H, Naoe M, Yasui Y, Ohnishi M (2000) Cerebrosides in grapevine leaves: distinct composition of sphingoid bases among the grapevine species having different tolerances to freezing temperature. Biosci Biotechnol Biochem 64(6):1271–1273PubMedCrossRefGoogle Scholar
  15. 15.
    Ng CK, Carr K, McAinsh MR, Powell B, Hetherington AM (2001) Drought-induced guard cell signal transduction involves sphingosine-1-phosphate. Nature 410(6848):596–599PubMedCrossRefGoogle Scholar
  16. 16.
    Zheng H, Rowland O, Kunst L (2005) Disruptions of the Arabidopsis enoyl-CoA reductase gene reveal an essential role for very-long-chain fatty acid synthesis in cell expansion during plant morphogenesis. Plant Cell 17(5):1467–1481PubMedCrossRefGoogle Scholar
  17. 17.
    Chen M, Markham JE, Dietrich CR, Jaworski JG, Cahoon EB (2008) Sphingolipid long-chain base hydroxylation is important for growth and regulation of sphingolipid content and composition in Arabidopsis. Plant Cell 20(7):1862–1878PubMedCrossRefGoogle Scholar
  18. 18.
    Dietrich CR, Han G, Chen M, Berg RH, Dunn TM, Cahoon EB (2008) Loss-of-function mutations and inducible RNAi suppression of Arabidopsis LCB2 genes reveal the critical role of sphingolipids in gametophytic and sporophytic cell viability. Plant J 54(2):284–298PubMedCrossRefGoogle Scholar
  19. 19.
    Teng C, Dong H, Shi L, Deng Y, Mu J, Zhang J, Yang X, Zuo J (2008) Serine palmitoyltransferase, a key enzyme for de novo synthesis of sphingolipids, is essential for male gametophyte development in Arabidopsis. Plant Physiol 146(3):1322–1332PubMedCrossRefGoogle Scholar
  20. 20.
    Quist TM, Sokolchik I, Shi H, Joly RJ, Bressan RA, Maggio A, Narsimhan M, Li X (2009) HOS3, an ELO-like gene, inhibits effects of ABA and implicates a S-1-P/ceramide control system for abiotic stress responses in Arabidopsis thaliana. Mol Plant 2(1):138–151PubMedCrossRefGoogle Scholar
  21. 21.
    Zauner S, Ternes P, Warnecke D (2010) Biosynthesis of sphingolipids in plants (and some of their functions). Adv Exp Med Biol 688:249–263PubMedCrossRefGoogle Scholar
  22. 22.
    Markham JE, Molino D, Gissot L, Bellec Y, Hématy K, Marion J, Belcram K, Palauqui JC, Satiat-Jeunemaître B, Faure JD (2011) Sphingolipids containing very-long-chain fatty acids define a secretory pathway for specific polar plasma membrane protein targeting in Arabidopsis. Plant Cell 23(6):2362–2378PubMedCrossRefGoogle Scholar
  23. 23.
    Chao DY, Gable K, Chen M, Baxter I, Dietrich CR, Cahoon EB, Guerinot ML, Lahner B, Lü S, Markham JE, Morrissey J, Han G, Gupta SD, Harmon JM, Jaworski JG, Dunn TM, Salt DE (2011) Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. Plant Cell 23(3):1061–1081PubMedCrossRefGoogle Scholar
  24. 24.
    Dutilleul C, Benhassaine-Kesri G, Demandre C, Rézé N, Launay A, Pelletier S, Renou JP, Zachowski A, Baudouin E, Guillas I (2012) Phytosphingosine-phosphate is a signal for AtMPK6 activation and Arabidopsis response to chilling. New Phytol 194(1):181–191PubMedCrossRefGoogle Scholar
  25. 25.
    Chen M, Markham JE, Cahoon EB (2012) Sphingolipid Δ8 unsaturation is important for glucosylceramide biosynthesis and low-temperature performance in Arabidopsis. Plant J 69(5):769–781PubMedCrossRefGoogle Scholar
  26. 26.
    Islam MN, Jacquemot MP, Coursol S, Ng CK (2012) Sphingosine in plants—more riddles from the Sphinx? New Phytol 193(1):51–57PubMedCrossRefGoogle Scholar
  27. 27.
    Alden KP, Dhondt-Cordelier S, McDonald KL, Reape TJ, Ng CK, McCabe PF, Leaver CJ (2011) Sphingolipid long chain base phosphates can regulate apoptotic-like programmed cell death in plants. Biochem Biophys Res Commun 410(3):574–580PubMedCrossRefGoogle Scholar
  28. 28.
    Tsegaye Y, Richardson CG, Bravo JE, Mulcahy BJ, Lynch DV, Markham JE, Jaworski JG, Chen M, Cahoon EB, Dunn TM (2007) Arabidopsis mutants lacking long chain base phosphate lyase are fumonisin-sensitive and accumulate trihydroxy-18:1 long chain base phosphate. J Biol Chem 282(38):28195–28206PubMedCrossRefGoogle Scholar
  29. 29.
    Nakagawa N, Kato M, Takahashi Y, Shimazaki KI, Tamura K, Tokuji Y, Kihara A, Imai H (2011) Degradation of long-chain base 1-phosphate (LCBP) in Arabidopsis: functional characterization of LCBP phosphatase involved in the dehydration stress response. J Plant Res [Epub ahead of print]Google Scholar
  30. 30.
    Imai H, Nishiura H (2005) Phosphorylation of sphingoid long-chain bases in Arabidopsis: functional characterization and expression of the first sphingoid long-chain base kinase gene in plants. Plant Cell Physiol 46(2):375–380PubMedCrossRefGoogle Scholar
  31. 31.
    Worrall D, Liang YK, Alvarez S, Holroyd GH, Spiegel S, Panagopulos M, Gray JE, Hetherington AM (2008) Involvement of sphingosine kinase in plant cell signalling. Plant J 56(1):64–72PubMedCrossRefGoogle Scholar
  32. 32.
    Liu H, Chakravarty D, Maceyka M, Milstien S, Spiegel S (2002) Sphingosine kinases: a novel family of lipid kinases. Prog Nucleic Acid Res Mol Biol 71:493–511PubMedCrossRefGoogle Scholar
  33. 33.
    Coursol S, Fan LM, Le Stunff H, Spiegel S, Grlroy S, Assmann SM (2003) Sphingolipid signalling in Arabidopsis guard cells involves heterotrimeric G proteins. Nature 423(6940):651–654PubMedCrossRefGoogle Scholar
  34. 34.
    Coursol S, Le Stunff H, Lynch DV, Gilroy S, Assmann SM, Spiegel S (2005) Arabidopsis sphingosine kinase and the effects of phytosphingosine-1-phosphate on stomatal aperture. Plant Physiol 137(2):724–737PubMedCrossRefGoogle Scholar
  35. 35.
    Guo L, Mishra G, Taylor K, Wang X (2011) Phosphatidic acid binds and stimulates Arabidopsis sphingosine kinases. J Biol Chem 286(15):13336–13345PubMedCrossRefGoogle Scholar
  36. 36.
    Guo L, Mishra G, Markham JE, Li M, Tawfall A, Welti R, Wang X (2012) Connections between sphingosine kinase and phospholipase D in the abscisic acid signaling pathway in Arabidopsis. J Biol Chem 287(11):8286–8296PubMedCrossRefGoogle Scholar
  37. 37.
    Nishiura H, Tamura K, Morimoto Y, Imai H (2000) Characterization of sphingolipid long-chain base kinase in Arabidopsis thaliana. Biochem Soc Trans 28(6):747–748PubMedCrossRefGoogle Scholar
  38. 38.
    Luo H, Song F, Goodman RM, Zheng Z (2005) Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol 7(5):459–468PubMedCrossRefGoogle Scholar
  39. 39.
    Horsch RB, Rogers SG, Fraley RT (1985) Transgenic plants. Cold Spring Harb Symp Quant Biol 50:433–437PubMedCrossRefGoogle Scholar
  40. 40.
    Wright KM, Duncan GH, Pradel KS, Carr F, Wood S, Oparka KJ, Cruz SS (2000) Analysis of the N gene hypersensitive response induced by a fluorescently tagged tobacco mosaic virus. Plant Physiol 123(4):1375–1386PubMedCrossRefGoogle Scholar
  41. 41.
    Yokota S, Taniguchi Y, Kihara A, Mitsutake S, Igarashi Y (2004) Asp177 in C4 domain of mouse sphingosine kinase 1a is important for the sphingosine recognition. FEBS Lett 578(1–2):106–110PubMedCrossRefGoogle Scholar
  42. 42.
    Hannun YA, Loomis CR, Merrill AH Jr, Bell RM (1986) Sphingosine inhibition of protein kinase C activity and of phorbol dibutyrate binding in vitro and in human platelets. J Biol Chem 261(27):12604–12609PubMedGoogle Scholar
  43. 43.
    Merrill AH, Sereni AM, Stevens VL, Hannun YA, Bell RM, Kinkade JM Jr (1986) Inhibition of phorbol ester-dependent differentiation of human promyelocytic leukemic (HL-60) cells by sphinganine and other long-chain bases. J Biol Chem 261(27):12610–12615PubMedGoogle Scholar
  44. 44.
    Wilson E, Olcott MC, Bell RM, Merrill AH Jr, Lambeth JD (1986) Inhibition of the oxidative burst in human neutrophils by sphingoid long-chain bases. Role of protein kinase C in activation of the burst. J Biol Chem 261(27):12616–12623PubMedGoogle Scholar
  45. 45.
    Liang H, Yao N, Song JT, Luo S, Lu H, Greenberg JT (2003) Ceramides modulate programmed cell death in plants. Genes Dev 17(21):2636–2641PubMedCrossRefGoogle Scholar
  46. 46.
    Shi L, Bielawski J, Mu J, Dong H, Teng C, Zhang J, Yang X, Tomishige N, Hanada K, Hannun YA, Zuo J (2007) Involvement of sphingoid bases in mediating reactive oxygen intermediate production and programmed cell death in Arabidopsis. Cell Res 17(12):1030–1040PubMedCrossRefGoogle Scholar
  47. 47.
    Takahashi Y, Berberich T, Kanzaki H, Matsumura H, Saitoh H, Kusano T, Terauchi R (2009) Serine palmitoyltransferase, the first step enzyme in sphingolipid biosynthesis, is involved in nonhost resistance. Mol Plant Microbe Interact 22(1):31–38PubMedCrossRefGoogle Scholar
  48. 48.
    Gan Y, Zhang L, Zhang Z, Dong S, Li J, Wang Y, Zheng X (2009) The LCB2 subunit of the sphingolipid biosynthesis enzyme serine palmitoyltransferase can function as an attenuator of the hypersensitive response and Bax-induced cell death. New Phytol 181(1):127–146PubMedCrossRefGoogle Scholar
  49. 49.
    Yu X, Wang X, Huang X, Buchenauer H, Han Q, Guo J, Zhao J, Qu Z, Huang L, Kang Z (2011) Cloning and characterization of a wheat neutral ceramidase gene Ta-CDase. Mol Biol Rep 38(5):3447–3454PubMedCrossRefGoogle Scholar
  50. 50.
    Abbas HK, Duke SO, Porter JK, Wray EM, Hodges L, Sessions AE, Wang E, Merrill AH Jr, Riley RT (1994) Fumonisin- and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases. Plant Physiol 106(3):1085–1093PubMedGoogle Scholar
  51. 51.
    Greenberg JT, Silverman FP, Liang H (2000) Uncoupling salicylic acid-dependent cell death and defense-related responses from disease resistance in the Arabidopsis mutant acd5. Genetics 156(1):341–350PubMedGoogle Scholar
  52. 52.
    Raffaele S, Vailleau F, Leger A, Joubes J, Miersch O, Huard C, Blee E, Mongrand S, Domergue F, Roby D (2008) A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20(3):752–767PubMedCrossRefGoogle Scholar
  53. 53.
    Wang W, Yang X, Tangchaiburana S, Ndeh R, Markham JE, Tsegaye Y, Dunn TM, Wang GL, Bellizzi M, Parsons JF, Morrissey D, Bravo JE, Lynch DV, Xiao S (2008) An inositolphosphorylceramide synthase is involved in regulation of plant programmed cell death associated with defense in Arabidopsis. Plant Cell 20(11):3163–3179PubMedCrossRefGoogle Scholar
  54. 54.
    Ternes P, Feussner K, Werner S, Lerche J, Iven T, Heilmann I, Riezman H, Feussner I (2011) Disruption of the ceramide synthase LOH1 causes spontaneous cell death in Arabidopsis thaliana. New Phytol 192(4):841–854PubMedCrossRefGoogle Scholar
  55. 55.
    Cuvillier O, Pirianov G, Kleuser B, Vanek PG, Coso OA, Gutkind S, Spiegel S (1996) Suppression of ceramide-mediated programmed cell death by sphingosine-1-phosphate. Nature 381(6585):800–803PubMedCrossRefGoogle Scholar
  56. 56.
    Birbes H, El Bawab S, Obeid LM, Hannun YA (2002) Mitochondria and ceramide: intertwined roles in regulation of apoptosis. Adv Enzyme Regul 42:113–129PubMedCrossRefGoogle Scholar
  57. 57.
    Cuvillier O (2002) Sphingosine in apoptosis signaling. Biochim Biophys Acta 1585(2–3):153–162PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Huijuan Zhang
    • 1
  • Li Li
    • 1
  • Yongmei Yu
    • 1
  • Jibo Mo
    • 1
  • Lijun Sun
    • 1
  • Bo Liu
    • 1
  • Dayong Li
    • 1
  • Fengming Song
    • 1
    • 2
  1. 1.State Key Laboratory for Rice Biology, Institute of BiotechnologyZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of Plant Protection, College of Agriculture and BiotechnologyZhejiang UniversityHangzhouPeople’s Republic of China

Personalised recommendations