Skip to main content

Advertisement

Log in

Current evidence on the relationship between three polymorphisms in the XRCC7 gene and cancer risk

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Inconsistency of the association of polymorphisms of XRCC7 with cancer is noted. Three commonly studied XRCC7 polymorphisms including rs7003908 (T>G), rs7830743 (A>G), and rs10109984 (T>C) were selected to explore their association with risk of development of cancer by meta-analysis of published case–control studies. The results showed that no significant associations with cancer risk were found in any model in terms of rs7003908, rs7830743 and rs10109984 when all studies were pooled into the meta-analysis. But when stratified by cancer type, statistically significantly elevated cancer risk was only found in prostate cancer for rs7003908 (GG vs. TT: OR = 1.845, 95 % CI = 1.178–2.888; dominant model: OR = 1.423, 95 % CI = 1.050–1.929; recessive model: OR = 1.677, 95 % CI = 1.133–2.482). In the subgroup analysis by ethnicity or study design, no significantly increased risks were found for all three polymorphisms. This meta-analysis suggests that XRCC7 rs7003908 polymorphism may contribute to cancer susceptibility for prostate cancer, which is recommended to be included in future large-sample studies and functional assays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  2. Lichtenstein P, Holm NV, Verkasalo PK et al (2000) Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343:78–85

    Article  PubMed  CAS  Google Scholar 

  3. Karran P (2000) DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10:144–150

    Article  PubMed  CAS  Google Scholar 

  4. Hopfner KP, Putnam CD, Tainer JA (2002) DNA double-strand break repair from head to tail. Curr Opin Struct Biol 12:115–122

    Article  PubMed  CAS  Google Scholar 

  5. Jackson SP (2002) Sensing and repairing DNA double-strand breaks. Carcinogenesis 23:687–696

    Article  PubMed  CAS  Google Scholar 

  6. Wang LE, Bondy ML, Shen H et al (2004) Polymorphisms of DNA repair genes and risk of glioma. Cancer Res 64:5560–5563

    Article  PubMed  CAS  Google Scholar 

  7. Hirata H, Hinoda Y, Matsuyama H et al (2006) Polymorphisms of DNA repair genes are associated with renal cell carcinoma. Biochem Biophys Res Commun 342:1058–1062

    Article  PubMed  CAS  Google Scholar 

  8. Hirata H, Hinoda Y, Tanaka Y et al (2007) Polymorphisms of DNA repair genes are risk factors for prostate cancer. Eur J Cancer 43:231–237

    Article  PubMed  CAS  Google Scholar 

  9. Liu Y, Zhang H, Zhou K et al (2007) Tagging SNPs in non-homologous end-joining pathway genes and risk of glioma. Carcinogenesis 28:1906–1913

    Article  PubMed  CAS  Google Scholar 

  10. Hu Z, Liu H, Wang H et al (2008) Tagging single nucleotide polymorphisms in phosphoinositide-3-kinase-related protein kinase genes involved in DNA damage “checkpoints” and lung cancer susceptibility. Clin Cancer Res 14:2887–2891

    Article  PubMed  CAS  Google Scholar 

  11. Siraj AK, Al-Rasheed M, Ibrahim M et al (2008) RAD52 polymorphisms contribute to the development of papillary thyroid cancer susceptibility in Middle Eastern population. J Endocrinol Invest 31:893–899

    PubMed  CAS  Google Scholar 

  12. Wang SY, Peng L, Li CP et al (2008) Genetic variants of the XRCC7 gene involved in DNA repair and risk of human bladder cancer. Int J Urol 15:534–539

    Article  PubMed  CAS  Google Scholar 

  13. Bhatti P, Struewing JP, Alexander BH et al (2008) Polymorphisms in DNA repair genes, ionizing radiation exposure and risk of breast cancer in U.S. Radiologic technologists. Int J Cancer 122:177–182

    CAS  Google Scholar 

  14. McKean-Cowdin R, Barnholtz-Sloan J, Inskip PD et al (2009) Associations between polymorphisms in DNA repair genes and glioblastoma. Cancer Epidemiol Biomarkers Prev 18:1118–1126

    Article  PubMed  CAS  Google Scholar 

  15. Gangwar R, Ahirwar D, Mandhani A, Mittal RD (2009) Do DNA repair genes OGG1, XRCC3 and XRCC7 have an impact on susceptibility to bladder cancer in the North Indian population? Mutat Res 680:56–63

    Article  PubMed  CAS  Google Scholar 

  16. Mandal RK, Kapoor R, Mittal RD (2010) Polymorphic variants of DNA repair gene XRCC3 and XRCC7 and risk of prostate cancer: a study from North Indian population. DNA Cell Biol 29:669–674

    Article  PubMed  CAS  Google Scholar 

  17. Long XD, Yao JG, Huang YZ et al (2011) DNA repair gene XRCC7 polymorphisms (rs#7003908 and rs#10109984) and hepatocellular carcinoma related to AFB1 exposure among Guangxi population, China. Hepatol Res 41:1085–1093

    Article  PubMed  CAS  Google Scholar 

  18. Al-Hadyan KS, Al-Harbi NM, Al-Qahtani SS, Alsbeih GA (2012) Involvement of single-nucleotide polymorphisms in predisposition to head and neck cancer in Saudi Arabia. Genet Test Mol Biomarkers 16:95–101

    Article  PubMed  CAS  Google Scholar 

  19. Nasiri M, Saadat I, Omidvari S, Saadat M (2012) Genetic variation in DNA repair gene XRCC7 (G6721T) and susceptibility to breast cancer. Gene 505:195–197

    Google Scholar 

  20. Thakkinstian A, McElduff P, D’Este C, Duffy D, Attia J (2005) A method for meta-analysis of molecular association studies. Stat Med 24:1291–1306

    Article  PubMed  Google Scholar 

  21. Rohlfs RV, Weir BS (2008) Distributions of Hardy–Weinberg equilibrium test statistics. Genetics 180:1609–1616

    Article  PubMed  CAS  Google Scholar 

  22. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  Google Scholar 

  23. Egger M, Davey SG, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634

    Article  PubMed  CAS  Google Scholar 

  24. Fu YP, Yu JC, Cheng TC et al (2003) Breast cancer risk associated with genotypic polymorphism of the nonhomologous end-joining genes: a multigenic study on cancer susceptibility. Cancer Res 63:2440–2446

    PubMed  CAS  Google Scholar 

  25. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K (2002) A comprehensive review of genetic association studies. Genet Med 4:45–61

    Article  PubMed  CAS  Google Scholar 

  26. Wacholder S, Chanock S, Garcia-Closas M, El GL, Rothman N (2004) Assessing the probability that a positive report is false: an approach for molecular epidemiology studies. J Natl Cancer Inst 96:434–442

    Article  PubMed  Google Scholar 

  27. Gregoire G, Derderian F, Le Lorier J (1995) Selecting the language of the publications included in a meta-analysis: is there a Tower of Babel bias? J Clin Epidemiol 48:159–163

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Natural Science Foundation of China (81101499), Shanghai Natural Science Foundation (11ZR1407600), and Fudan University Science Foundation for Young Scholars (09FQ76).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Wu, Xh. & Gan, Y. Current evidence on the relationship between three polymorphisms in the XRCC7 gene and cancer risk. Mol Biol Rep 40, 81–86 (2013). https://doi.org/10.1007/s11033-012-2018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2018-9

Keywords

Navigation