Skip to main content
Log in

2C-methyl- d- erythritol 2,4-cyclodiphosphate synthase from Stevia rebaudiana Bertoni is a functional gene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Stevia [Stevia rebaudiana (Bertoni)] is a perennial herb which accumulates sweet diterpenoid steviol glycosides (SGs) in its leaf tissue. SGs are synthesized by 2C-methyl-d-erythritol 4-phosphate (MEP) pathway. Of the various enzymes of the MEP pathway, 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (MDS) (encoded by MDS) catalyzes the cyclization of 4-(cytidine 5′ diphospho)-2C-methyl-d-erythritol 2-phosphate into 2C-methyl-d-erythritol 2,4-cyclodiphosphate. Complementation of the MDS knockout mutant strain of Escherichia coli, EB370 with putative MDS of stevia (SrMDS) rescued the lethal mutant, suggesting SrMDS to be a functional gene. Experiments conducted in plant growth chamber and in the field suggested SrMDS to be a light regulated gene. Indole 3-acetic acid (IAA; 50, 100 μM) down-regulated the expression of SrMDS at 4 h of the treatment, whereas, abscisic acid did not modulate its expression. A high expression of SrMDS was observed during the light hours of the day as compared to the dark hours. The present work established functionality of SrMDS and showed the role of light and IAA in regulating expression of SrMDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Dewick PM (1999) The biosynthesis of C5–C25 terpenoid compounds. Nat Prod Rep 16(1):97–130

    Article  CAS  Google Scholar 

  2. Sacchettini JC, Poulter CD (1997) Creating isoprenoid diversity. Science 277(5333):1788–1789

    Article  PubMed  CAS  Google Scholar 

  3. Rodríguez-Concepción M, Forés O, Martínez-García J, González V, Phillips M, Ferrer A, Boronat A (2004) Distinct light-mediated pathways regulate the biosynthesis and exchange of isoprenoid precursors during Arabidopsis seedling development. Plant Cell 16(1):144–156

    Article  PubMed  Google Scholar 

  4. Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5(9):221–223

    Article  Google Scholar 

  5. Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295(2):517–524

    PubMed  CAS  Google Scholar 

  6. Shibata H, Sonoke S, Ochiai H, Nishihashi H, Yamada M (1991) Glucosylation of steviol and steviol-glucosides in extracts from Stevia rebaudiana Bertoni. Plant Physiol 95(1):152–156

    Article  PubMed  CAS  Google Scholar 

  7. Starrat AN, Kirby CW, Pocs R, Brandle JE (2002) Rebaudioside F, a diterpene glycoside from Stevia rebaudiana. Phytochemistry 59(4):367–370

    Article  Google Scholar 

  8. Kinghorn AD, Soejarto DD (1985) Current status of stevioside as a sweetening agent for human use. In: Wagner H, Hikino H, Farnsworth NR (eds) Economic and medicinal plant research, vol 1. Academic Press, New York, pp 1–52

    Google Scholar 

  9. Gregersen S, Jeppesen PB, Holst JJ, Hermansen K (2004) Antihyperglycemic effects of stevioside in type 2 diabetic subjects. Metab Clin Exp 53(1):73–76

    Article  PubMed  CAS  Google Scholar 

  10. Hsieh MH, Chan P, Sue YM, Liu JC, Liang TH, Huang TY, Tomlinson B, Sum MS, Kao PF, Chen YJ (2003) Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: a two-year, randomized, placebo-controlled study. Clin Ther 25(11):2797–2808

    Article  PubMed  CAS  Google Scholar 

  11. de Oliveira BH, Stiirmer JC, de Souza Filho JD, Ayub RA (2008) Plant growth regulation activity of steviol and derivatives. Phytochemistry 69(7):1528–1533

    Article  PubMed  Google Scholar 

  12. Totté N, Charon L, Rohmer M, Compernolle F, Baboeuf I, Geuns JMC (2000) Biosynthesis of the diterpenoid steviol, an ent-kaurene derivative from Stevia rebaudiana Bertoni, via the methylerythritol phosphate pathway. Tetrahedron Lett 41(33):6407–6410

    Article  Google Scholar 

  13. Totté N, Van den Ende W, Damme EJMV, Compernolle F, Baboeuf I, Geuns JMC (2003) Cloning and heterologous expression of early genes in gibberellin and steviol biosynthesis via the methylerythritol phosphate pathway in Stevia rebaudiana. Can J Bot 81(5):517–522

    Article  Google Scholar 

  14. Kishida H, Wada T, Unzai S, Kuzuyama T, Takagi M, Terada T, Shirouzu M, Yokoyama S, Tame JR, Park SY (2003) Structure and catalytic mechanism of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate (MECDP) synthase, an enzyme in the non-mevalonate pathway of isoprenoid synthesis. Acta Crystallogr D Biol Crystallogr 59(1):23–31

    Article  PubMed  Google Scholar 

  15. Richard SB, Ferrer JL, Bowman ME, Lillo AM, Tetzlaff CN, Cane DE, Noel JP (2002) Structure and mechanism of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase. An enzyme in the mevalonate-independent isoprenoid biosynthetic pathway. J Biol Chem 277(10):8667–8672

    Article  PubMed  CAS  Google Scholar 

  16. Steinbacher S, Kaiser J, Wungsintaweekul J, Hecht S, Eisenreich W, Gerhardt S, Bacher A, Rohdich F (2002) Structure of 2C-methyl-d-erythritol-2 4-cyclodiphosphate synthase involved in mevalonate-independent biosynthesis of isoprenoids. J Mol Biol 316(1):79–88

    Article  PubMed  CAS  Google Scholar 

  17. Kemp LE, Alphey MS, Bond CS, Ferguson MAJ, Hecht S, Bacher A, Eisenreich W, Rohdich F, Hunter WN (2005) The identification of isoprenoids that bind in the intersubunit cavity of Escherichia coli 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase by complementary biophysical methods. Acta Crystallogr D Biol Crystallogr 61(1):45–52

    Article  PubMed  Google Scholar 

  18. Buetow L, Brown AC, Parish T, Hunter WN (2007) The structure of Mycobacteria 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase, an essential enzyme, provides a platform for drug discovery. BMC Struct Biol 7:68

    Article  PubMed  Google Scholar 

  19. Kumar H, Kaul K, Gupta-Bajpai S, Kaul VK, Kumar S (2012) A comprehensive analysis of fifteen genes of steviol glycosides biosynthesis pathway in Stevia rebaudiana (Bertoni). Gene 492(1):276–284

    Article  PubMed  CAS  Google Scholar 

  20. Veau B, Courtois M, Oudin A, Chenieux JC, Rideau M, Clastre M (2000) Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim Biophys Acta 1517(1):159–163

    Article  PubMed  CAS  Google Scholar 

  21. Mansouri H, Asrar Z, Amarowic R (2011) The response of terpenoids to exogenous gibberellic acid in Cannabis sativa L. at vegetative stage. Acta Physiol Plant 33(4):1085–1091

    Article  CAS  Google Scholar 

  22. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed  CAS  Google Scholar 

  23. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  24. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  25. Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684

    PubMed  CAS  Google Scholar 

  26. Campbell TL, Brown ED (2002) Characterization of the depletion of 2-C-methyl-d-erythritol-2,4-cyclodiphosphate synthase in Escherichia coli and Bacillus subtilis. J Bacteriol 184(20):5609–5618

    Article  PubMed  CAS  Google Scholar 

  27. Kawoosa T, Singh H, Kumar A, Sharma SK, Devi K, Dutt S, Vats SK, Sharma M, Ahuja PS, Kumar S (2010) Light and temperature regulated terpene biosynthesis: hepatoprotective monoterpene picroside accumulation in Picrorhiza kurrooa. Funct Integr Genomics 10(3):393–404

    Article  PubMed  CAS  Google Scholar 

  28. Ahrazem O, Rubio-Moraga A, Trapero A, Gómez-Gómez L (2012) Developmental and stress regulation of gene expression for a 9-cis-epoxycarotenoid dioxygenase, CstNCED, isolated from Crocus sativus stigmas. J Exp Bot 63(2):681–694

    Article  PubMed  CAS  Google Scholar 

  29. Bhardwaj PK, Kaur J, Sobti RC, Ahuja PS, Kumar S (2011) Lipoxygenase in Caragana jubata responds to low temperature, abscisic acid, methyl jasmonate and salicylic acid. Gene 483(1–2):49–53

    Article  PubMed  CAS  Google Scholar 

  30. Singh K, Raizada J, Bhardwaj PK, Ghawana S, Rani A, Singh H, Kaul K, Kumar S (2004) 26S rRNA-based internal control gene primer pair for reverse transcription-polymerase chain reaction-based quantitative expression studies in diverse plant species. Anal Biochem 335(2):330–333

    Article  PubMed  CAS  Google Scholar 

  31. Hsieh MH, Goodman HM (2006) Functional evidence for the involvement of Arabidopsis IspF homolog in the nonmevalonate pathway of plastid isoprenoid biosynthesis. Planta 223(4):779–784

    Article  PubMed  CAS  Google Scholar 

  32. Kim SM, Kuzuyama T, Chang YJ, Kim SU (2006) Cloning and characterization of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate synthase (MECS) gene from Ginkgo biloba. Plant Cell Rep 25(8):829–835

    Article  PubMed  CAS  Google Scholar 

  33. Jin H, Gong Y, Guo B, Qiu C, Liu D, Miao Z, Sun X, Tang K (2006) Isolation and characterization of a 2C-methyl-d-erythritol 2,4-cyclodiphosphate synthase gene from Taxus media. Mol Biol 40(6):914–921

    Article  CAS  Google Scholar 

  34. Burlat V, Oudin A, Courtois M, Rideau M, St-Pierre B (2004) Co-expression of three MEP pathway genes and geraniol 10-hydroxylase in internal phloem parenchyma of Catharanthus roseus implicates multicellular translocation of intermediates during the biosynthesis of monoterpene indole alkaloids and isoprenoid-derived primary metabolites. Plant J 38(1):131–141

    Article  PubMed  CAS  Google Scholar 

  35. Hsieh MH, Goodman HM (2005) The Arabidopsis IspH homolog is involved in the plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol 138(2):641–653

    Article  PubMed  CAS  Google Scholar 

  36. Wiberley AE, Donohue AR, Westphal MM, Sharkey TD (2009) Regulation of isoprene emission from poplar leaves throughout a day. Plant Cell Environ 32(7):939–947

    Article  PubMed  CAS  Google Scholar 

  37. Covington MF, Maloof JN, Straume M, Kay SA, Harmer SL (2008) Global transcriptome analysis reveals circadian regulation of key pathways in plant growth and development. Genome Biol 9(8):R130

    Article  PubMed  Google Scholar 

  38. Seemann M, Wegner P, Schünemann V, Bui BTS, Wolff M, Marquet A, Trautwein AX, Rohmer M (2005) Isoprenoid biosynthesis in chloroplasts via the methylerythritol phosphate pathway: the (E)-4-hydroxy-3-methylbut 2-enyl diphosphate synthase (GcpE) from Arabidopsis thaliana is a [4Fe-4S] protein. J Biol Inorg Chem 10(2):131–137

    Article  PubMed  CAS  Google Scholar 

  39. Mongëlard G, Seemann M, Boisson A-M, Rohmer M, Bligny R, Rivasseau C (2011) Measurement of carbon flux through the MEP pathway for isoprenoid synthesis by 31P-NMR spectroscopy after specific inhibition of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate reductase. Effect of light and temperature. Plant Cell Environ 34(8):1241–1247

    Article  PubMed  Google Scholar 

  40. Cordoba E, Salmi M, León P (2009) Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot 60(10):2933–2943

    Article  PubMed  CAS  Google Scholar 

  41. Shufan X, Jin M, Shuang L, Genji Q, Si T, Haoni L, Hongya G, Li-Jia Q (2010) Disruption of the 1-deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) gene results in albino, dwarf and defects in trichome initiation and stomata closure in Arabidopsis. Cell Res 20(6):688–700

    Article  Google Scholar 

  42. Ni S, Robinson H, Marsing GC, Bussiere DE, Kennedy MA (2004) Structure of 2C-methyl-d-erythritol-2,4-cyclodiphosphate synthase from Shewanella oneidensis at 1.6 Å: identification of farnesyl pyrophosphate trapped in a hydrophobic cavity. Acta Crystallogr D Biol Crystallogr 60(11):1949–1957

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank Council of Scientific and Industrial Research (CSIR) for funding under the mission mode project entitled “Exploration and acquisition of specific and targeted neutraceuticals with a back drop of nutrigenomic stevia, tea, and potato species; CMM0014”. Mutant strain EB370 was kindly provided by Dr. Eric Brown, McMaster University, Canada. HK gratefully acknowledges the Junior/Senior Research Fellowship awarded by Indian Council of Medical Research (ICMR). The technical assistance provided by Digvijay Singh Naruka in sequencing is duly acknowledged. The manuscript represents IHBT communication number 818.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_1998_MOESM1_ESM.ppt

Agarose gel showing PCR amplification of SrMDS using colony lysate of putative positive colonies of EB370 transformant (lanes, L1–L7). DNA size markers (M) are shown on the left side of panel. Presence of the cloned insert was verified using a vector pQE30 UA (Qiagen, Germany) specific primer pair (as detailed in the “Materials and methods” section) that added additional 378 bp to the amplicon. Since size of cloned coding region of SrMDS was 696 bp, PCR with the said primer pair yielded an amplicon of 1,074 bp. The directional cloning of the insert was also confirmed by sequencing

11033_2012_1998_MOESM2_ESM.ppt

SDS–polyacrylamide gel showing expression of recombinant SrMDS. Expression of SrMDS was induced by inclusion of IPTG for 12 h (lane, “I”). Un-induced culture (lane, “U”) served as control. Presence of recombinant SrMDS (marked by arrow) was confirmed by the appearance of a band of 24.8 kD in the induced sample. Protein markers (lane, “M”; Fermentas, USA) were loaded as shown

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, H., Singh, K. & Kumar, S. 2C-methyl- d- erythritol 2,4-cyclodiphosphate synthase from Stevia rebaudiana Bertoni is a functional gene. Mol Biol Rep 39, 10971–10978 (2012). https://doi.org/10.1007/s11033-012-1998-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1998-9

Keywords

Profiles

  1. Kashmir Singh