Skip to main content

Advertisement

Log in

Problems encountered in bicistronic IRES-GFP expression vectors employed in functional analyses of GC-induced genes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Our laboratory has developed a series of Gateway® compatible lentiviral expression systems for constitutive and conditional gene knock-down and over-expression. For tetracycline-regulated transgenic expression, we constructed a lentiviral “DEST” plasmid (pHR-TetCMV-Dest-IRES-GFP5) containing a tetracycline-responsive minimal CMV promoter, followed by an attP site-flanked DEST cassette (for efficient cloning of cDNAs by “Gateway®” recombination cloning) and green fluorescent protein (GFP) driven by an internal ribosomal entry site (IRES).This lentiviral bicistronic plasmid allows immediate FACS identification and characterization of successfully transfected cell lines. Although this system worked well with several cDNAs, we experienced serious problems with SLA, Bam and BMF. Particularly, we cloned the cDNA for human SLA (Src–like adapter), a candidate gene in GC-induced apoptosis, into this plasmid. The resulting construct (pHR-TetCMV-SLA-IRES-GFP5) was transfected into HEK 293-T packaging cells to produce viral particles for transduction of CEM-C7H2-2C8 cells. Although the construct produced many green fluorescent colonies at the HEK 293-T and the CEM-C7H2-2C8 level, we could not detect any SLA protein with α-SLA antibody from corresponding cell lysates. In contrast, the antibody readily detected SLA in whole cell lysate of HEK 293-T cells transfected with a GST-flagged SLA construct lacking IRES-GFP. To directly address the potential role of the IRES-GFP sequence, we cloned the SLA coding region into pHR-TetCMV-Dest, a vector that differs from pHR-TetCMV-Dest-IRES-GFP5 just by the absence of the IRES-GFP cassette. The resulting pHR-TetCMV-SLA construct was used for transfection of HEK 293-T cells. Corresponding lysates were assayed with α-SLA antibody and found positive. These data, in concert with previous findings, suggest that the IRES-GFP cassette may interfere with translation of certain smaller size cDNAs (like SLA) or generate fusion proteins and entail defective virus production in an unpredictable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

GFP:

Green fluorescent protein

IRES:

Internal ribosomal entry site

CMV:

Cytomegalovirus

DEST:

Destination

FACS:

Fluorescence activated cell sorting

pENTR:

Entry plasmid

GC:

Glucocorticoid

cDNA:

Complementary doexyribonucleic acid

EMCV:

Encephalomyocarditis virus

HEK:

Human embryonic kidney

SLA:

SrcLike adaptor

Tet:

Tetracycline

References

  1. Pui CH, Relling MV, Downing JR (2004) Acute lymphoblastic leukemia. N Engl J Med 350:1535–1548

    Article  PubMed  CAS  Google Scholar 

  2. Cidlowski JA, King KL, Evans-Storms RB, Montague JW, Bortner CD, Hughes FM (1996) The biochemistry and molecular biology of glucocorticoid-induced apoptosis in the immune system. Recent Prog Horm Res 51:457–490

    PubMed  CAS  Google Scholar 

  3. Ashwell JD, Lu FW, Vacchio MS (2000) Glucocorticoids in T cell development and function. Annu Rev Immunol 18:309–345

    Article  PubMed  CAS  Google Scholar 

  4. Pui CH, Robison LL, Look AT (2008) Acute lymphoblastic leukaemia. Lancet 71:1030–1043

    Article  Google Scholar 

  5. Schmidt S, Rainer J, Riml S, Ploner C, Jesacher S, Achmuller C, Presul E, Skvortsov S, Crazzolara R, Fiegl M, Raivio T, Janne OA, Geley S, Meister B, Kofler R (2006) Identification of glucocorticoid-response genes in children with acute lymphoblastic leukemia. Blood 107:2061–2069

    Article  PubMed  CAS  Google Scholar 

  6. Kaminski A, Howell MT, Jackson RJ (1990) Initiation of encephalomyocarditis virus RNA translation: the authentic initiation site is not selected by a scanning mechanism. EMBO J 9:3753–3759

    PubMed  CAS  Google Scholar 

  7. Merrick WC (1992) Mechanism and regulation of eukaryotic protein synthesis. Microbiol Rev 56:291–315

    PubMed  CAS  Google Scholar 

  8. Sonenberg N (1988) Cap binding proteins of eucaryotic messenger RNA: functions in initiation of translation. Prog Nucl Acid Res Mol Biol 35:173–207

    Article  CAS  Google Scholar 

  9. Hennecke M, Kwissa M, Metzger K, Oumard A, Kroger A, Schirmbeck R, Reimann J, Hauser H (2001) Composition and arrangement of genes define the strength of IRES-driven translation in bicistronic mRNAs. Nucl Acids Res 29:3327–3334

    Article  PubMed  CAS  Google Scholar 

  10. Chambard JC, Pognonec PA (1998) Reliable way of obtaining stable inducible clones. Nucl Acids Res 26:3443–3444

    Article  PubMed  CAS  Google Scholar 

  11. Jang SK, Wimmer E (1990) Cap-independent translation of encephalomyocarditis virus RNA: structural elements of the internal ribosomal entry site and involvement of a cellular 57-kD RNA-binding protein. Genes Dev 4:1560–1572

    Article  PubMed  CAS  Google Scholar 

  12. Ohlmann T, Jackson RJ (1999) The properties of chimeric picornavirus IRES show that discrimination between internal translation initiation sites is influenced by the identity of the IRES and not just the context of the AUG codon. RNA 5:764–778

    Article  PubMed  CAS  Google Scholar 

  13. Ngoi SM, Chien AC, Lee CG (2004) Exploiting internal ribosome entry sites in gene therapy vector design. Curr Gene Ther 4(4):15–31

    Article  PubMed  CAS  Google Scholar 

  14. Ploner C, Rainer J, Niederegger H, Eduardoff M, Villunger A, Geley S, Kofler R (2008) The BCL2 rheostat in glucocorticoid-induced apoptosis of acute lymphoblastic leukemia. Leukemia 22:370–377

    Article  PubMed  CAS  Google Scholar 

  15. Gruber G, Carlet M, Turtscher E, Meister B, Irving JA, Ploner C, Kofler R (2009) Levels of glucocorticoid receptor and its ligand determine sensitivity and kinetics of glucocorticoid-induced leukemia apoptosis. Leukemia 23:820–823

    Article  PubMed  CAS  Google Scholar 

  16. Wasim M, Carlet M, Mansha M, Greil R, Ploner C, Trockenbacher A, Rainer J, Kofler R (2010) PLZF/ZBTB16, a glucocorticoid response gene in acute lymphoblastic leukemia, interferes with glucocorticoid-induced apoptosis. J Steroid Biochem Mol Biol 120:218–227

    Article  PubMed  CAS  Google Scholar 

  17. Strasser-Wozak EMC, Hattmannstorfer R, Hála M, Hartmann BL, Fiegl M, Geley S, Kofler R (1995) Splice site mutation in the glucocorticoid receptor gene causes resistance to glucocorticoid-induced apoptosis in a human acute leukemic cell line. Cancer Res 55:348–353

    PubMed  CAS  Google Scholar 

  18. Parson W, Kirchebner R, Mühlmann R, Renner K, Kofler A, Schmidt S, Kofler R (2005) Cancer cell line identification by short tandem repeat profiling: power and limitations. FASEB J 19:434–436

    PubMed  CAS  Google Scholar 

  19. Gossen M, Bujard H (1992) Tight control of gene expression in mammalian cells by tetracycline responsive promoters. Proc Natl Acad Sci USA 89:5547–5551

    Article  PubMed  CAS  Google Scholar 

  20. Pepperkok R, Squire A, Geley S, Bastiaens PI (1999) Simultaneous detection of multiple green fluorescent proteins in live cells by fluorescence lifetime imaging microscopy. Curr Biol 9:269–272

    Article  PubMed  CAS  Google Scholar 

  21. Mansha M, Carlet M, Ploner C, Gruber G, Wasim M, Wiegers GJ, Rainer J, Geley S, Kofler R (2010) Functional analyses of Src-like adaptor (SLA), a glucocorticoid-regulated gene in acute lymphoblastic leukemia. Leuk Res 34:529–534

    Article  PubMed  CAS  Google Scholar 

  22. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  PubMed  CAS  Google Scholar 

  23. Bochkov YA, Palmenberg AC (2006) Translational efficiency of EMCV IRES in bicistronic vectors is dependent upon IRES sequence and gene Location. Biotechniques 41:283–290

    Article  PubMed  CAS  Google Scholar 

  24. Attal J (1999) The optimal use of IRES (internal ribosomal entry site) in expression vectors. Genetic Analysis Biomol Eng 15:161–165

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Drs. S Geley and R Kofler for stimulating discussions; S Lobenwein for technical help. This study was supported by grants from Innsbruck Cancer Aid Society and Higher Education Commission of Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Mansha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansha, M., Wasim, M., Ploner, C. et al. Problems encountered in bicistronic IRES-GFP expression vectors employed in functional analyses of GC-induced genes. Mol Biol Rep 39, 10227–10234 (2012). https://doi.org/10.1007/s11033-012-1898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1898-z

Keywords

Navigation