Skip to main content

Advertisement

Log in

Association of the C242T polymorphism in the NADPH oxidase p22 phox gene with carotid atherosclerosis in Slovenian patients with type 2 diabetes

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oxidative stress plays an important role in the pathogenesis of diabetes and its complications. Genetic variations of enzymes producing reactive oxygen species could change their activity, thus contributing to the susceptibility to oxidative stress. The aim of this study was to examine the role of the NADPH oxidase C242T polymorphism in the development of carotid atherosclerosis in patients with type 2 diabetes. 286 diabetic patients and 150 healthy controls were enrolled in the study. Carotid atherosclerosis was quantified ultrasonographically as carotid intima-media thickness, plaque score (0–6) and plaque type (1–5). Diabetic patients were divided into low and high risk groups based on ultrasound phenotypes of carotid atherosclerosis. Genotypes were determined by real-time PCR. Levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) were measured by enzyme-linked immunosorbent assay (ELISA). Diabetic patients demonstrated a statistically significant difference compared to healthy controls in the following parameters: age, BMI, waist circumference, smoking prevalence, glucose, triglyceride and 8-OHdG serum levels. Control subjects had significantly higher levels of HDL, LDL and total cholesterol than diabetics (p < 0.001). The NADPH C242T polymorphism was not related with clinical characteristics, lipid parameters and 8-OHdG serum levels. We found no significant difference in the NADPH genotype distribution between diabetics and controls (p = 0.19) nor between low and high risk subgroups of diabetics (mean CIMT: p = 0.67; plaque score: p = 0.49, plaque type: p = 0.56). In the present study the NADPH C242T polymorphism was not associated with the degree of oxidative stress and carotid atherosclerosis. Further studies will show if it can be used as a genetic marker for carotid atherosclerosis in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  PubMed  CAS  Google Scholar 

  2. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27:1047–1053

    Article  PubMed  Google Scholar 

  3. Boyle PJ (2007) Diabetes mellitus and macrovascular disease: mechanisms and mediators. Am J Med 120(suppl 2):S12–S17

    Article  PubMed  CAS  Google Scholar 

  4. Plutzky J (2011) Macrovascular effects and safety issues of therapies for type 2 diabetes. Am J Cardiol 108(3 Suppl):25B–32B

    Article  PubMed  CAS  Google Scholar 

  5. Takayanagi R, Inoguchi T, Ohnaka K (2011) Clinical and experimental evidence for oxidative stress as Na exacerbating factor of diabetes mellitus. J Clin Biochem Nutr 48:72–77

    Article  PubMed  CAS  Google Scholar 

  6. Pérez-Mutate P, Zulet MA, Martinez JA (2009) Reactive species and diabetes: counteracting oxidative stress to improve health. Curr Opin Pharmacol 9:771–779

    Article  Google Scholar 

  7. Singh U, Jialal I (2006) Oxidative stress and atherosclerosis. Pathophysiology 13:129–142

    Article  PubMed  CAS  Google Scholar 

  8. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS et al (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269:9889–9897

    PubMed  CAS  Google Scholar 

  9. Katsuyama M (2010) Nox/NADPH oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles. J Pharmacol Sci 114:134–146

    Article  PubMed  CAS  Google Scholar 

  10. Lassegue B, Clempus RE (2003) Vascular NAD(P)H oxidases: specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol 285:R277–R297

    PubMed  CAS  Google Scholar 

  11. Ushio-Fukai M, Zafari AM, Fukui T, Ishizaka N, Griendling KK (1996) p22 phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells. J Biol Chem 271:23317–23321

    Article  PubMed  CAS  Google Scholar 

  12. Guzik TJ, West NE, Black E, McDonald D, Ratnatunga C, Pillai R et al (2000) Functional effect of the C242T polymorphism in the NAD(P)H oxidase p22 phox gene on vascular superoxide production in atherosclerosis. Circulation 102:1744–1747

    Article  PubMed  CAS  Google Scholar 

  13. Inoue N, Kawashima S, Kanazawa K, Yamada S, Akita H, Yokoyama M (1998) Polymorphism of the NADH/NADPH oxidase p22 phox gene in patients with coronary artery disease. Circulation 97:135–137

    Article  PubMed  CAS  Google Scholar 

  14. Najafi M, Alipoor B, Shabani M, Amirfarhangi A, Ghasemi H (2012) Association between rs4673 (C/T) and rs13306294 (A/G) haplotypes of NAD(P)H oxidase p22 phox gene and severity of stenosis in coronary arteries. Gene. doi:10.1016/j.gene.2012.02.032

    Google Scholar 

  15. Gardemann A, Mages P, Katz N, Tillmanns H, Haberbosch W (1999) The p22 phox A640G gene polymorphism but not the C242T gene variation is associated with coronary heart disease in younger individuals. Atherosclerosis 145:315–323

    Article  PubMed  CAS  Google Scholar 

  16. Cai H, Duarte N, Wilcken DE, Wang XL (1999) NADH/NADPH oxidase p22 phox C242T polymorphism and coronary artery disease in the Australian population. Eur J Clin Invest 29:744–748

    Article  PubMed  CAS  Google Scholar 

  17. Hayaishi-Okano R, Yamasaki Y, Kajimoto Y, Sakamoto K, Ohtoshi K, Katakami N et al (2003) Association of NAD(P)H oxidase p22 phox gene variation with advanced carotid atherosclerosis in Japanese type 2 diabetes. Diabetes Care 26:458–463

    Article  PubMed  CAS  Google Scholar 

  18. Hayaishi-Okano R, Yamasaki Y, Ohtoshi K, Yasuda T, Katakami N, Hirano T, Yoshino G, Kajimoto Y, Hori M (2002) NAD(P)H oxidase p22 phox C242T polymorphism affects LDL particle size and insulin resistance in Japanese subjects. J Atheroscler Thromb 9(4):200–205

    Article  PubMed  CAS  Google Scholar 

  19. World Healthy Organization (WHO) (1999) Report of a WHO consultation: definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. World Healthy Organization Department of Noncommunicable Disease Surveillance, Geneva. http://whqlibdoc.who.int/hq/1999/WHO_NCD_NCS_99.2.pdf

  20. Touboul PJ, Hennerici MG, Meairs S, Adams H, Amarenco P, Bornstein N et al (2007) Mannheim carotid intima-media thickness consensus (2004–2006). An update on behalf of the Advisory Board of the 3rd and 4th watching the risk symposium, 13th and 15th European stroke conferences, Mannheim, Germany, 2004, and Brussels, Belgium, 2006. Cerebrovasc Dis 23:75–80

  21. Stein JH, Korcarz CE, Hurst RT, Lonn E, Kendall CB, Mohler ER, Najjar SS, Rembold CM, Post WS, American Society of Echocardiography Carotid Intima-Media Thickness Task Force (2008) Use of carotid ultrasound to identify subclinical vascular disease and evaluate cardiovascular disease risk: a consensus statement from the American Society of Echocardiography Carotid Intima-Media Thickness Task Force. Endorsed by the Society for Vascular Medicine. J Am Soc Echocardiogr 21(2):93–111

    Google Scholar 

  22. Grewal J, Anand S, Islam S, Lonn E, SHARE and SHARE-AP Investigators (2008) Prevalence and predictors of subclinical atherosclerosis among asymptomatic “low risk” individuals in a multiethnic population. Atherosclerosis 197(1):435–442

    Article  PubMed  CAS  Google Scholar 

  23. Lee EJ, Kim HJ, Bae JM, Kim JC, Han HJ, Park CS et al (2007) Relevance of common carotid intima-media thickness and carotid plaque as risk factors for ischemic stroke in patients with type 2 diabetes mellitus. AJNR Am J Neuroradiol 28:916–919

    PubMed  CAS  Google Scholar 

  24. Geroulakos G, Ramaswami G, Nicolaides A, James K, Labropoulos N, Belcaro G et al (1993) Characterization of symptomatic and asymptomatic carotid plaques using high-resolution real-time ultrasonography. Br J Surg 80:1274–1277

    Article  PubMed  CAS  Google Scholar 

  25. Gray-Weale AC, Graham JC, Burnett JR, Byrne K, Lusby RJ (1998) Carotid artery atheroma: comparison of preoperative B-mode ultrasound appearance with carotid endarterectomy specimen pathology. J Cardiovasc Surg 29:676–681

    Google Scholar 

  26. Montauban van Swijndregt AD, Elbers HR, Moll FL, de Letter J, Ackerstaff RG (1998) Ultrasonographic characterization of carotid plaques. Ultrasound Med Biol 24:489–493

    Article  PubMed  CAS  Google Scholar 

  27. Goliasch G, Wiesbauer F, Grafl A, Ponweiser E, Blessberger H, Tentzeris I, Wojta J, Schillinger M, Huber K, Maurer G, Mannhalter C, Sunder-Plassmann R (2011) The effect of p22-PHOX (CYBA) polymorphisms on premature coronary artery disease (≤40 years of age). Thromb Haemost 105(3):529–534

    Article  PubMed  CAS  Google Scholar 

  28. Dandona P, Mohanty P, Ghanim H, Aljada A, Browne R, Hamouda W, Prabhala A, Afzal A, Garg R (2001) The suppressive effect of dietary restriction and weight loss in the obese on the generation of reactive oxygen species by leukocytes, lipid peroxidation, and protein carbonylation. The J Clin Endocrinol Metab 86(1):355–362

    Google Scholar 

  29. Wright E Jr, Scism-Bacon JL, Glass LC (2006) Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 60(3):308–314

    Article  PubMed  CAS  Google Scholar 

  30. Nakano T, Matsunaga S, Nagata A, Maruyama T (2003) NAD(P)H oxidase p22phox Gene C242T polymorphism and lipoprotein oxidation. Clin Chim Acta 335(1–2):101–107

    Article  PubMed  CAS  Google Scholar 

  31. Bianchini F, Jaeckel A, Vineis P, Martinez-Garcia C, Elmstahl S, van Kappel AL, Boeing H, Ohshima H, Riboli E, Kaaks R (2001) Inverse correlation between alcohol consumption and lymphocyte levels of 8-hydroxydeoxyguanosine in humans. Carcinogenesis 22:885–890

    Article  PubMed  CAS  Google Scholar 

  32. Pilger A, Germadnik D, Riedel K, Meger-Kossien I, Scherer G, Rüdiger HW (2001) Longitudinal study of urinary 8-hydroxy-2-deoxyguanosine excretion in healthy adults. Free Radic Res 35:273–280

    Article  PubMed  CAS  Google Scholar 

  33. Cooke MS, Evans MD, Dove R, Rozalski R, Gackowski D, Siomek A, Lunec J, Olinski R (2005) DNA repair is responsible for the presence of oxidatively damaged DNA lesions in urine. Mutat Res 574:58–66

    Article  PubMed  CAS  Google Scholar 

  34. Horiike S, Kawanishi S, Kaito M, Ma N, Tanaka H, Fujita N, Iwasa M, Kobayashi Y, Hiraku Y, Oikawa S, Murata M, Wang J, Semba R, Watanabe S, Adachi Y (2005) Accumulation of 8-nitroguanine in the liver of patients with chronic hepatitis C. J Hepatol 43:403–410

    Article  PubMed  CAS  Google Scholar 

  35. Foksinski M, Gackowski D, Rozalski R, Olinski R (2003) Cellular level of 8-oxo-2-deoxyguanosine in DNA does not correlate with urinary excretion of the modiWed base/nucleoside. Acta Biochim Pol 50:549–553

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Brina Beškovnik Hrastar, BA, for revising the English.

Conflict of interest

The authors declare no conflict of interest related to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danijel Petrovič.

Additional information

Marija Šantl Letonja, and Jovana Nikolajević-Starčević are contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letonja, M.Š., Nikolajević-Starčević, J., Batista, D.C.B. et al. Association of the C242T polymorphism in the NADPH oxidase p22 phox gene with carotid atherosclerosis in Slovenian patients with type 2 diabetes. Mol Biol Rep 39, 10121–10130 (2012). https://doi.org/10.1007/s11033-012-1886-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1886-3

Keywords

Navigation