Skip to main content
Log in

Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) is an estrogenic environmental toxin widely used for the production of plastics. Human frequent exposure to this chemical has been proposed to be a potential public health risk. The objective of this study was to assess the effects of BPA on DNA methylation of imprinting genes in fetal mouse germ cell. Pregnant mice were treated with BPA at doses of 0, 40, 80 and 160 μg BPA/kg body weight/day from 0.5 day post coitum. DNA methylation of imprinting genes, Igf2r, Peg3 and H19, was decreased with the increase of BPA concentration in fetal mouse germ cells (p < 0.01).The relative mRNA levels of Nobox were lower in BPA-treated group compared to control (BPA free) in female fetal germ cells, but in male fetal germ cells, a significant higher in Nobox expression was observed in BPA-treated group compared to control. Decreased mRNA expression of specific meiotic genes including Stimulated by Stra8 and Dazl were obtained in the female fetal germ cells. In conclusion, BPA exposure can affect the DNA methylation of imprinting genes in fetal mouse germ cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McLaren A (2003) Primordial germ cells in the mouse. Dev Biol 262:1–15

    Article  CAS  PubMed  Google Scholar 

  2. Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko IT, Ogura A, Ishino F (2002) Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129:1807–1817

    Article  CAS  PubMed  Google Scholar 

  3. Reik W (2007) Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432

    Article  CAS  PubMed  Google Scholar 

  4. Saffman EE, Lasko P (1999) Germline development in vertebrates and invertebrates. Cell Mol Life Sci 55(8–9):1141–1163

    Article  CAS  PubMed  Google Scholar 

  5. Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321:209–213

    Article  CAS  PubMed  Google Scholar 

  6. Chapin RE, Adams J, Boekelheide K, Gray J, Hayward SW, Lees PS, McIntyre BS, Portier KM, Schnorr TM, Selevan SG, Vandenbergh JG, Woskie SR (2008) NTP-CERHR expert panel report on the reproductive and developmental toxicity of bisphenol A. Birth Defects Res 83:157–395

    Article  CAS  Google Scholar 

  7. Ho SM, Tang WY, de Belmonte Frausto J, Prins GS (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Markey CM, Luque EH, Munoz De Toro M, Sonnenschein C, Soto AM (2001) In utero exposure to bisphenol A alters the development and tissue organization of the mouse mammary gland. Biol Reprod 65:1215–1223

    CAS  PubMed  Google Scholar 

  9. Rubin BS, Lenkowski JR, Schaeberle CM, Vandenberg LN, Ronsheim PM, Soto AM (2006) Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology 147:3681–3691

    Article  CAS  PubMed  Google Scholar 

  10. Nakamura K, Itoh K, Sugimoto T, Fushiki S (2007) Prenatal exposure to bisphenol A affects adult murine neocortical structure. Neurosci Lett 420:100–105

    Article  CAS  PubMed  Google Scholar 

  11. Nakamura K, Itoh K, Yaoi T, Fujiwara Y, Sugimoto T, Fushiki S (2006) Murine neocortical histogenesis is perturbed by prenatal exposure to low doses of bisphenol A. J Neurosci Res 84:1197–1205

    Article  CAS  PubMed  Google Scholar 

  12. Chao HH, Zhang XF, Chen B, Pan B, Zhang LJ, Li L, Sun XF, Shi QH, Shen W (2012) Bisphenol A exposure modifies methylation of imprinted genes in mouse oocytes via the estrogen receptor signaling pathway. Histochem Cell Biol 137:249–259

    Article  CAS  PubMed  Google Scholar 

  13. Zhang HQ, Zhang XF, Zhang LJ, Chao HH, Pan B, Feng YM, Li L, Sun XF, Shen W (2012) Fetal exposure to bisphenol A affects the primordial follicle formation by inhibiting the meiotic progression of oocytes. Mol Biol Rep 39:5651–5657

    Google Scholar 

  14. Pesce M, De Felici M (1995) Purification of mouse primordial germ cells by MiniMACS magnetic separation system. Dev Biol 170:722–725

    Article  CAS  PubMed  Google Scholar 

  15. Pan B, Chao HH, Chen B, Zhang LJ, Li L, Sun XF, Shen W (2011) DNA methylation of germ cell-specific basic helix-loop-helix (HLH) of transcription factors, Sohlh2 and Figα, during germ cell development. Mol Hum Reprod 17:550–561

    Article  CAS  PubMed  Google Scholar 

  16. Li E, Beard C, Jaenisch R (1993) Role for DNA methylation in genomic imprinting. Nature 366:362–365

    Article  CAS  PubMed  Google Scholar 

  17. Li L, Keverne EB, Aparicio SA, Ishino F, Barton SC, Surani MA (1999) Regulation of maternal behavior and offspring growth by paternally expressed Peg3. Science 284:330–333

    Article  CAS  PubMed  Google Scholar 

  18. Hall JM, McDonnell DP (2005) Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5:343–357

    Article  PubMed  Google Scholar 

  19. Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  CAS  PubMed  Google Scholar 

  20. McGrath J, Solter D (1984) Completion of mouse embryogenesis requires both the maternal and paternal genomes. Cell 37:179–183

    Article  CAS  PubMed  Google Scholar 

  21. Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 30:548–550

    Article  Google Scholar 

  22. Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  CAS  PubMed  Google Scholar 

  23. Li JY, Lees–Murdock DJ, Xu GL (2004) Timing of establishment of paternal methylation imprints in the mouse. Genomics 84:952–960

    Article  CAS  PubMed  Google Scholar 

  24. Yamazaki Y, Low EW, Marikawa Y (2005) Adult mice cloned from migrating primordial germ cells. Proc Natl Acad Sci USA 102:11361–11366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yamazaki Y, Mann MR, Lee SS, Marh J, McCarrey JR, Yanagimachi R, Bartolomei MS (2003) Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 100:12207–12212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Choi Y, Qin Y, Berger MF, Ballow DJ, Bulyk ML, Rajkovic A (2007) A Microarray analyses of newborn mouse ovaries lacking Nobox. Biol Reprod 77:312–319

    Article  CAS  PubMed  Google Scholar 

  27. Suzumori N, Yan C, Matzuk MM, Rajkovic A (2002) Nobox is a homeobox encoding gene preferentially expressed in primordial and growing oocytes. Mech Dev 111:137–141

    Article  CAS  PubMed  Google Scholar 

  28. Huntriss J, Hinkins M, Picton HM (2006) cDNA cloning and expression of the human NOBOX gene in oocytes and ovarian follicles. Mol Hum Reprod 12:283–289

    Article  CAS  PubMed  Google Scholar 

  29. Qin Y, Choi Y, Zhao H, Simpson JL, Chen ZJ, Rajkovic A (2007) NOBOX homeobox mutation causes premature ovarian failure. Am J Hum Genet 81:576–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Qin Y, Shi Y, Zhao Y, Carson SA, Simpson JL, Chen ZJ (2009) Mutation analysis of NOBOX homeodomain in Chinese women with premature ovarian failure. Fertil Steril 91:1507–1509

    Article  CAS  PubMed  Google Scholar 

  31. Simpson JL (2008) Genetic and phenotypic heterogeneity in ovarian failure: overview of selected candidate genes. Ann NY Acad Sci 1135:146–154

    Article  PubMed  Google Scholar 

  32. Rajkovic A, Pangas SA, Ballow D, Suzumori N, Matzuk MM (2004) NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression. Science 305:1157–1159

    Article  CAS  PubMed  Google Scholar 

  33. Lechowska A, Bilinski S, Choi Y, Shin Y, Kloc M, Rajkovic A (2011) Premature ovarian failure in nobox-deficient mice is caused by defects in somatic cell invasion and germ cell cyst breakdown. J Assist Reprod Genet 28:583–589

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bouilly J, Bachelot A, Broutin I, Touraine P, Binart N (2011) Novel NOBOX loss of function mutations account for 6.2 % of cases in a large primary ovarian insufficiency cohort. Hum Mutat 32:1108–1113

    Article  CAS  PubMed  Google Scholar 

  35. Krishnan AV, Stathis P, Permuth SF, Tokes L, Feldman D (1993) Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving. Endocrinology 132:2279–2286

    CAS  PubMed  Google Scholar 

  36. Gould JC, Leonard LS, Maness SC, Wagner BL, Conner K, Zacharewski T, Safe S, McDonnell DP, Gaido KW (1998) Bisphenol A interacts with the estrogen receptor alpha in a distinct manner from estradiol. Mol Cell Endocrinol 142:203–214

    Article  CAS  PubMed  Google Scholar 

  37. Routledge EJ, White R, Parker MG, Sumpter JP (2000) Differential effects of xenoestrogens on coactivator recruitment by estrogen receptor (ER) alpha and ERbeta. J Biol Chem 275:35986–35993

    Article  CAS  PubMed  Google Scholar 

  38. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863–870

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by National Basic Research Program of China (973 Program, 2012CB944401 and 2007CB947401), National Nature Science Foundation (31001010, 31171376 and 31101716), Foundation of Distinguished Young Scholars (JQ201109), Doctoral Foundation (BS2010NY010), Foundation of Education Department (J11LC20) and Taishan Scholar Foundation of Shandong Province, and Nature Science Foundation of Hubei Province (2011489).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, XF., Zhang, LJ., Feng, YN. et al. Bisphenol A exposure modifies DNA methylation of imprint genes in mouse fetal germ cells. Mol Biol Rep 39, 8621–8628 (2012). https://doi.org/10.1007/s11033-012-1716-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1716-7

Keywords

Navigation