Skip to main content
Log in

EMBRYONIC FACTOR 31 encodes a tyrosyl-tRNA synthetase that is essential for seed development

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Aminoacyl-tRNA synthetases (AARSs) involve the process of catalyzing the ligation of specific amino acids to their cognate tRNAs. Here we identified an Arabidopsis mutant embryonic factor 31 (fac31), its embryos arrested at development from one cell to globular stage. The FAC31 gene was identified by positional cloning and confirmed by a genetic complementation test with two independent T-DNA insertion lines and transgenic rescue with full-length genomic DNA. FAC31 encodes a Tyrosyl-tRNA synthetase and localize to mitochondria and cytoplasm. Fac31 mutants contain a point mutation from CAA to a stop codon TAA which may lead to a truncated protein. The phenotype of fac31 mutants are very similar to the T-DNA insertion lines Salk_016722 and Salk_045570 displayed smaller embryo sac contains only less number of endosperm nucleolus. Genetic analysis showed that the FAC31 gene had no parental effects through the transmission of mutated FAC31 gene by gametes. FAC31 is a high-conserved protein among animals and plants. RT-PCR analysis and promoter-GUS expression showed that it is expressed in nearly all tissues tested, strongly expressed in meristem of seedlings, the primordium of lateral root, young inflorescences, mature pollen, germinated pollen tubes and embryo sacs before heart stage. Our findings suggest that FAC31 is essential for the seed development through regulation the expanding of embryo sac and proliferation of endosperm nucleolus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AARSs:

Aminoacyl-tRNA synthetases

fac31 :

Embryonic factor 31

dTPs:

Dual targeting peptides

TyrRS:

Tyrosyl-tRNA synthetase

EMS:

Ethyl methanesulfonate

ORFs:

Open reading frames

References

  1. Brandão MM, Silva-Filho MC (2011) Evolutionary history of Arabidopsis thaliana aminoacyl-tRNA synthetase dual-targeted proteins. Mol Biol Evol 28(1):79–85

    Article  PubMed  Google Scholar 

  2. Nomanbhoy TK, Hendrickson TL, Schimmel P (1999) Transfer RNA-dependent translocation of misactivated amino acids to prevent errors in protein synthesis. Mol Cell 4(4):519–528

    Article  PubMed  CAS  Google Scholar 

  3. Edgecombe M, Craddock HS, Smith DC, McLennan AG, Fisher MJ (1997) Diadenosine polyphosphate-stimulated gluconeogenesis in isolated rat proximal tubules. Biochem J 323(Pt 2):451–456

    PubMed  CAS  Google Scholar 

  4. Nishimura A, Moriya S, Ukai H, Nagai K, Wachi M, Yamada Y (1997) Diadenosine 5′,5′′′-P1,P4-tetraphosphate (Ap4A) controls the timing of cell division in Escherichia coli. Genes Cells 2(6):401–413

    Article  PubMed  CAS  Google Scholar 

  5. Romby P, Springer M (2003) Bacterial translational control at atomic resolution. Trends Genet 19(3):155–161

    Article  PubMed  CAS  Google Scholar 

  6. Sampath P, Mazumder B, Seshadri V, Gerber CA, Chavatte L, Kinter M, Ting SM, Dignam JD, Kim S, Driscoll DM, Fox PL (2004) Noncanonical function of glutamyl-prolyl-tRNA synthetase: gene-specific silencing of translation. Cell 119(2):195–208

    Article  PubMed  CAS  Google Scholar 

  7. Park SG, Schimmel P, Kim S (2008) Aminoacyl tRNA synthetases and their connections to disease. Proc Natl Acad Sci USA 105(32):11043–11049. doi:10.1073/pnas.0802862105

    Article  PubMed  CAS  Google Scholar 

  8. Browning KS (1996) The plant translational apparatus. Plant Mol Biol 32(1–2):107–144

    Article  PubMed  CAS  Google Scholar 

  9. Kim Y-K, Lee J-Y, Cho HS, Lee SS, Ha HJ, Kim S, Choi D, Pai H-S (2005) Inactivation of organellar glutamyl- and seryl-tRNA synthetases leads to developmental arrest of chloroplasts and mitochondria in higher plants. J Biol Chem 280(44):37098–37106. doi:10.1074/jbc.M504805200

    Article  PubMed  CAS  Google Scholar 

  10. Berg M, Rogers R, Muralla R, Meinke D (2005) Requirement of aminoacyl-tRNA synthetases for gametogenesis and embryo development in Arabidopsis. Plant J 44(5):866–878

    Article  PubMed  CAS  Google Scholar 

  11. Pesaresi P, Masiero S, Eubel H, Braun HP, Bhushan S, Glaser E, Salamini F, Leister D (2006) Nuclear photosynthetic gene expression is synergistically modulated by rates of protein synthesis in chloroplasts and mitochondria. Plant Cell 18(4):970–991

    Article  PubMed  CAS  Google Scholar 

  12. Uwer U, Willmitzer L, Altmann T (1998) Inactivation of a Glycyl-tRNA synthetase leads to an arrest in plant embryo development. Plant Cell Online 10(8):1277–1294. doi:10.1105/tpc.10.8.1277

    CAS  Google Scholar 

  13. Mireau H, Lancelin D, Small ID (1996) The same arabidopsis gene encodes both cytosolic and mitochondrial alanyl-tRNA synthetases. Plant Cell 8(6):1027–1039

    PubMed  CAS  Google Scholar 

  14. Bunjun S, Stathopoulos C, Graham D, Min B, Kitabatake M, Wang AL, Wang CC, Vivares CP, Weiss LM, Soll D (2000) A dual-specificity aminoacyl-tRNA synthetase in the deep-rooted eukaryote Giardia lamblia. Proc Natl Acad Sci USA 97(24):12997–13002

    Article  PubMed  CAS  Google Scholar 

  15. Ibba M, Becker HD, Stathopoulos C, Tumbula DL, Soll D (2000) The adaptor hypothesis revisited. Trends Biochem Sci 25(7):311–316

    Article  PubMed  CAS  Google Scholar 

  16. Stathopoulos C, Li T, Longman R, Vothknecht UC, Becker HD, Ibba M, Soll D (2000) One polypeptide with two aminoacyl-tRNA synthetase activities. Science 287(5452):479–482

    Article  PubMed  CAS  Google Scholar 

  17. Tumbula DL, Becker HD, Chang WZ, Soll D (2000) Domain-specific recruitment of amide amino acids for protein synthesis. Nature 407(6800):106–110

    Article  PubMed  CAS  Google Scholar 

  18. Duchêne AM, Giritch A, Hoffmann B, Cognat V, Lancelin D, Peeters NM, Zaepfel M, Maréchal-Drouard L, Small ID (2005) Dual targeting is the rule for organellar aminoacyl-tRNA synthetases in Arabidopsis thaliana. Proc Natl Acad Sci USA 102(45):16484–16489. doi:10.1073/pnas.0504682102

    Article  PubMed  Google Scholar 

  19. Berglund AK, Pujol C, Duchene AM, Glaser E (2009) Defining the determinants for dual targeting of amino acyl-tRNA synthetases to mitochondria and chloroplasts. J Mol Biol 393(4):803–814

    Article  PubMed  CAS  Google Scholar 

  20. Pujol C, Maréchal-Drouard L, Duchêne A-M (2007) How can organellar protein n-terminal sequences be dual targeting signals? In silico analysis and mutagenesis approach. J Mol Biol 369(2):356–367

    Article  PubMed  CAS  Google Scholar 

  21. Akashi K, Grandjean O, Small I (1998) Potential dual targeting of an Arabidopsis archaebacterial-like histidyl-tRNA synthetase to mitochondria and chloroplasts. FEBS Lett 431(1):39–44

    Article  PubMed  CAS  Google Scholar 

  22. Duchêne AM, Peeters N, Dietrich A, Cosset A, Small ID, Wintz H (2001) Overlapping destinations for two dual targeted glycyl-tRNA synthetases in Arabidopsis thaliana and Phaseolus vulgaris. J Biol Chem 276(18):15275–15283

    Article  PubMed  Google Scholar 

  23. Menand B, Marechal-Drouard L, Sakamoto W, Dietrich A, Wintz H (1998) A single gene of chloroplast origin codes for mitochondrial and chloroplastic methionyl-tRNA synthetase in Arabidopsis thaliana. Proc Natl Acad Sci USA 95(18):11014–11019

    Article  PubMed  CAS  Google Scholar 

  24. Peeters NM, Chapron A, Giritch A, Grandjean O, Lancelin D, Lhomme T, Vivrel A, Small I (2000) Duplication and quadruplication of Arabidopsis thaliana cysteinyl- and asparaginyl-tRNA synthetase genes of organellar origin. J Mol Evol 50(5):413–423

    PubMed  CAS  Google Scholar 

  25. Souciet G, Menand B, Ovesna J, Cosset A, Dietrich A, Wintz H (1999) Characterization of two bifunctional Arabdopsis thaliana genes coding for mitochondrial and cytosolic forms of valyl-tRNA synthetase and threonyl-tRNA synthetase by alternative use of two in-frame AUGs. Eur J Biochem 266(3):848–854

    Article  PubMed  CAS  Google Scholar 

  26. Morgante CV, Rodrigues RA, Marbach PA, Borgonovi CM, Moura DS, Silva-Filho MC (2009) Conservation of dual-targeted proteins in Arabidopsis and rice points to a similar pattern of gene-family evolution. Mol Genet Genomics 281(5):525–538

    Article  PubMed  CAS  Google Scholar 

  27. Bechtold N, Pelletier G (1998) In planta agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    PubMed  CAS  Google Scholar 

  28. Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19(6):1349

    Article  PubMed  CAS  Google Scholar 

  29. Steffen JG, Kang IH, Macfarlane J, Drews GN (2007) Identification of genes expressed in the Arabidopsis female gametophyte. Plant J 51(2):281–292

    Article  PubMed  CAS  Google Scholar 

  30. Grossniklaus U, Vielle-Calzada JP, Hoeppner MA, Gagliano WB (1998) Maternal control of embryogenesis by MEDEA, a polycomb group gene in Arabidopsis. Science 280(5362):446–450

    Article  PubMed  CAS  Google Scholar 

  31. Goldberg RB, de Paiva G, Yadegari R (1994) Plant embryogenesis: zygote to seed. Science 266(5185):605–614

    Article  PubMed  CAS  Google Scholar 

  32. Jürgens G (2001) Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J 20(14):3609–3616

    Article  PubMed  Google Scholar 

  33. Mayer U, Ruiz RAT, Berleth T, Miseera S, Juurgens G (1991) Mutations affecting body organization in the Arabidopsis embryo. Nature 353(6343):402–407

    Article  Google Scholar 

  34. Willemsen V, Scheres B (2004) Mechanisms of pattern formation in plant embryogenesis. Annu Rev Genet 38:587–614

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Kalei Ku for her valuable advice and critical read of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jiang.

Additional information

Li Jiang and Shu Wang contribute equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_1678_MOESM1_ESM.ppt

Fig. S1 (A) and (B) Map-based cloning of FAC31. (C) The gene structure of FAC31. Two T-DNA insertions lines inside the exon of FAC31. (PPT 31 kb)

Table S1. Complementation test by genomic DNA transformation. (XLS 17 kb)

Table S2. Ovules defective analysis in transgened complementated Salk_045570C and Salk_016722 plants. (XLS 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, L., Wang, S., Li, H. et al. EMBRYONIC FACTOR 31 encodes a tyrosyl-tRNA synthetase that is essential for seed development. Mol Biol Rep 39, 8297–8305 (2012). https://doi.org/10.1007/s11033-012-1678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1678-9

Keywords

Navigation