Skip to main content
Log in

Identification and characterization of a novel calcyclin binding protein (CacyBP) gene from Apis cerana cerana

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Calcyclin binding protein (CacyBP), a homolog of Sgt1, was shown to interact with some S100 proteins, Skp1, tubulin, actin and ERK1/2 kinases. Studies have also shown that CacyBP is a neuronal protein in mammals. Limited information is available regarding the properties and functions of CacyBP in insects. Here, we cloned and characterized a novel CacyBP gene, named AccCacyBP, from honeybee (Apis cerana cerana). Bioinformatic analysis indicated that AccCacyBP was highly conserved and closely related to the CacyBP of other insects. Promoter analysis revealed a number of putative tissue, development and stress-related transcription factor-binding sites. RT-qPCR demonstrated that AccCacyBP was expressed at all of the stages of development, especially in the brains of honeybees. Moreover, immunohistochemistry analysis showed the presence of AccCacyBP in the brain. The transcript levels of AccCacyBP in the brains of honeybees were developmentally induced and upregulated by exposure to oxidative stresses, including UV-light, acetamiprid and HgCl2. This study demonstrates that the CacyBP gene in honeybees may be a neuronal protein involved in the developmental regulation and the stress-response of the brain of honeybees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Filipek A, Wojda U (1996) p30, a novel protein target of mouse calcyclin (S100A6). Biochem J 320:585–587

    PubMed  CAS  Google Scholar 

  2. Filipek A, Jastrzebska B, Nowotny M et al (2002) CacyBP/SIP, a calcyclin and Siah-1-interacting protein, binds EF-hand proteins of the S100 family. J Biol Chem 277:28848–28852. doi:10.1074/jbc.M203602200

    Article  PubMed  CAS  Google Scholar 

  3. Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7(5):915–926. doi:10.1016/S1097-2765(01)00242-8

    Article  PubMed  CAS  Google Scholar 

  4. Schneider G, Nieznanski K, Kilanczyk E et al (2007) CacyBP/SIP interacts with tubulin in neuroblastoma NB2a cells and induces formation of globular tubulin assemblies. Biochim Biophys Acta 1773(11):1628–1636. doi:10.1016/j.bbamcr.2007.07.013

    Article  PubMed  CAS  Google Scholar 

  5. Kilanczyk E, Filipek S, Jastrzebska B et al (2009) CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1. Biochem Biophys Res Commun 380:54–59. doi:10.1016/j.bbrc.2009.01.026

    Article  PubMed  CAS  Google Scholar 

  6. Schneider G, Filipek A (2011) S100A6 binding protein and Siah-1 interacting protein (CacyBP/SIP): spotlight on properties and cellular function. Amino Acids 47:773–780. doi:10.1007/s00726-010-0498-2

    Article  Google Scholar 

  7. Bhattacharya S, Lee YT, Michowski W et al (2005) The modular structure of SIP facilitates its role in stabilizing multiprotein assemblies. Biochemistry 44(27):9462–9471. doi:10.1021/bi0502689

    Article  PubMed  CAS  Google Scholar 

  8. Filipek A, Michowski W, Kuznicki J (2007) Involvement of S100A6 (calcyclin) and its binding partners in intracellular signaling pathways. Advan Enzyme Regul 48:225–239. doi:10.1016/j.advenzreg.2007.11.001

    Article  Google Scholar 

  9. Filipek A, Kuz′nicki J (1998) Molecular cloning and expression of a mouse brain cDNA encoding a novel protein target of calcyclin. J Neurochem 70(5):1793–1798. doi:10.1046/j.1471-4159.1998.70051793.x

    Article  PubMed  CAS  Google Scholar 

  10. Jastrzebska B, Filipek A, Nowicka D et al (2000) Calcyclin (S100A6) binding protein (CacyBP) is highly expressed in brain neurons. J Histochem Cytochem 48(9):1195–1202. doi:10.1177/002215540004800903

    Article  PubMed  CAS  Google Scholar 

  11. Zhai H, Shi Y, Jin H et al (2008) Expression of calcyclin-binding protein/Siah-1 interacting protein in normal and malignant human tissues: an immunohistochemical survey. J Histochem Cytochem 56(8):765–772. doi:10.1369/jhc.2008.950519

    Article  PubMed  CAS  Google Scholar 

  12. Filipek A, Jastrzebska B, Nowotny M et al (2002) Ca2+-dependent translocation of the calcyclin-binding protein in neurons and neuroblastoma NB-2a cells. J Biol Chem 277:21103–21109. doi:10.1074/jbc.M111010200

    Article  PubMed  CAS  Google Scholar 

  13. Au KW, Kou CY, Woo AY et al (2006) Calcyclin binding protein promotes DNA synthesis and differentiation in rat neonatal cardiomyocytes. J Biol Chem 98:555–666. doi:10.1002/jcb.20710

    CAS  Google Scholar 

  14. Schneider G, Nieznanski K, Kilanczyk E et al (2007) CacyBP/SIP interacts with tubulin in neuroblastoma NB2a cells and induces formation of globular tubulin assemblies. Biochim Biophys Acta 1773:1628–1636. doi:10.1016/j.bbamcr.2007.07.013

    Article  PubMed  CAS  Google Scholar 

  15. Kilanczyk E, Filipek S, Jastrzebska B et al (2009) CacyBP/SIP binds ERK1/2 and affects transcriptional activity of Elk-1. Biochem Biophys Res Commun 380:54–59. doi:10.1016/j.bbrc.2009.01.026

    Article  PubMed  CAS  Google Scholar 

  16. Calábria LK, Veras Peixoto PM, Passos Lima AB et al (2011) Myosins and DYNLL1/LC8 in the honey bee (Apis mellifera L.) brain. J Insect Physiol. doi:10.1016/j.jinsphys.2011.06.005

  17. Giurfa M (2003) Cognitive neuroethology: dissecting non-elemental learning in a honeybee brain. Curr Opin Neurobiol 13:726–735. doi:10.1016/j.conb.2003.10.015

    Article  PubMed  CAS  Google Scholar 

  18. HG Consortium (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931–949. doi:10.1038/nature05260

    Article  Google Scholar 

  19. Sen Sarma M, Whitfield CW, Robinson GE (2007) Species differences in brain gene expression profiles associated with adult behavioral maturation in honey bees. BMC Genomics 8:202. doi:10.1186/1471-2164-8-202

    Article  PubMed  Google Scholar 

  20. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68:610–638. doi:10.1016/j.neuron.2010.09.039

    Article  PubMed  CAS  Google Scholar 

  21. Silva MFR, Santos AAD, Martins AR et al (2002) Myosin V and VI localization in brain tissue and synaptosomes fractions of the honeybee Apis mellifera. Mol Biol Cell (42nd American Society for Cell Biology Annual Meeting), 13:457a

  22. Calabria LK, Teixeira RR, Coelho Goncalves SM et al (2010) Comparative analysis of two immunohistochemical methods for antigen retrieval in the optical lobe of the honeybee Apis mellifera: myosin-v assay. Biol Res 43:7–12. doi:10.4067/S0716-97602010000100002

    Article  PubMed  CAS  Google Scholar 

  23. Baumann O (1998) The Golgi apparatus in honeybee photoreceptor cells: structural organization and spatial relationship to microtubules and actin filaments. Cell Tissue Res 291:351–361. doi:10.1007/s004410051004

    Article  PubMed  CAS  Google Scholar 

  24. Baumann O (2001) Distribution of nonmuscle myosin-II in honeybee photoreceptors and its possible role in maintaining compound eye architecture. J Comp Neurol 435:364–378. doi:10.1002/cne.1036

    Article  PubMed  CAS  Google Scholar 

  25. Schneider G, Nieznanski K, Jozwiak J et al (2010) Tubulin binding protein, CacyBP/SIP, induces actin polymerization and may link actin and tubulin cytoskeletons. Biochim Biophys Acta 1803:1308–1317. doi:10.1016/j.bbamcr.2010.07.003

    Google Scholar 

  26. Menzel R, Leboulle G, Eisenhardt D (2006) Small brains, bright minds. Cell 124:237–239. doi:10.1016/j.cell.2006.01.011

    Article  PubMed  CAS  Google Scholar 

  27. Franco R, Sánchez-Olea R, Reyes–Reyes EM et al (2009) Environmental toxicity, oxidative stress and apoptosis: Ménage à Trois. Mutat Res 674:3–22. doi:10.1016/j.mrgentox.2008.11.012

    PubMed  CAS  Google Scholar 

  28. Rabea EI, Nasr HM, Badawy ME (2010) Toxic effect and biochemical study of chlorfluazuron, oxymatrine, and spinosad on honey bees (Apis mellifera). Arch Environ Contam Toxicol 58:722–732. doi:10.1007/s00244-009-9403-y

    Article  PubMed  CAS  Google Scholar 

  29. Michelette ER, Soares AE (1993) Characterization of preimaginal developmental stages in Africanized honey bee workers (Apis mellifera L.). Apidologie 24:431–440. doi:10.1051/apido:19930410

    Article  Google Scholar 

  30. Alaux C, Ducloz F, Crauser D et al (2010) Diet effects on honeybee immunocompetence. Biol Lett 6:562–565. doi:10.1098/rsbl.2009.0986

    Article  PubMed  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta C (T)) method. Methods 25:402–408. doi:10.1006/meth.2001.1262

    Article  PubMed  CAS  Google Scholar 

  32. Cooper SE (2007) In vivo function of a novel Siah protein in Drosophila. Mech Dev 124:584. doi:10.1016/j.mod.2007.04.007

    Article  PubMed  CAS  Google Scholar 

  33. Lee YT, Jacob J, Michowski W et al (2004) Human Sgt1 binds HSP90 through the CHORD-Sgt1 domain and not the tetratricopeptide repeat domain. J Biol Chem 279:16511–16517. doi:10.1074/jbc.M400215200

    Article  PubMed  CAS  Google Scholar 

  34. Ericsson A, Kotarsky K, Svensson M et al (2006) Functional characterization of the CCL25 promoter in small intestinal epithelial cells suggests a regulatory role for Caudal-Related Homeobox (Cdx) transcription factors. J Immunol 176:3642–3651

    PubMed  CAS  Google Scholar 

  35. Kalm LV, Crossgrove K, Seggern DV et al (1994) The broad-complex directly controls a tissue specific response to the steroid hormone ecdysone at the onset of Drosophila metamorphosis. J EMBO 13:3505–3516

    Google Scholar 

  36. Hackerl U, Kaufmann E, Hartmann C et al (1995) The Drosophila fork head domain protein crocodile is required for the establishment of head structures. J EMBO 14:5306–5317

    Google Scholar 

  37. Fernandes M, Xiao H, Lis JT (1994) Fine structure analyses of the Drosophila and Saccharomyces heat shock factor-heat shock element interactions. Nucleic Acids Res 22:167–173. doi:10.1093/nar/22.2.167

    Article  PubMed  CAS  Google Scholar 

  38. Kim YS, Ham BK, Paek KH et al (2006) An Arabidopsis homologue of human seven-in-absentia-interacting protein is involved in pathogen resistance. Mol Cells 21(3):389–394

    PubMed  CAS  Google Scholar 

  39. Fahrbach SE (2006) Structure of the mushroom bodies of the insect brain. Annu Rev Entomol 51:209–232. doi:10.1146/annurev.ento.51.110104.150954

    Article  PubMed  CAS  Google Scholar 

  40. Dyer AG, Paulk AC, Reser DH (2011) Colour processing in complex environments: insights from the visual system of bees. Proc R Soc B 278:952–959. doi:10.1098/rspb.2010.2412

    Article  PubMed  Google Scholar 

  41. Bhattarai KK, Li Q, Liu YL et al (2007) The Mi-1-mediated pest resistance requires Hsp90 and Sgt1. Plant Physiol 144:312–323. doi:10.1104/pp.107.097246

    Article  PubMed  CAS  Google Scholar 

  42. Spiechowicz M, Zylicz A, Bieganowski P et al (2007) Hsp70 is a new target of Sgt1—an interaction modulated by S100A6. Biochem Biophys Res Commun 357:1148–1153. doi:10.1016/j.bbrc.2007.04.073

    Google Scholar 

  43. Ichihashi M, Ueda M, Budiyanto A et al (2003) UV-induced skin damage. Toxicology 189:21–39. doi:10.1016/S0300-483X(03)00150-1

    Article  PubMed  CAS  Google Scholar 

  44. Costa LG, Giordano G, Guizzetti M et al (2008) Neurotoxicity of pesticides: a brief review. Front Biosci 13:1240–1249. doi:10.2741/2758

    Google Scholar 

  45. Guzzi G, La Porta CA (2008) Molecular mechanisms triggered by mercury. Toxicology 244:1–12. doi:10.1016/j.tox.2007.11.002

    Article  PubMed  CAS  Google Scholar 

  46. Perry G, Castellani RJ, Smith MA et al (2003) Oxidative damage in the olfactory system in Alzheimer’s disease. Acta Neuropathol (Berlin) 106:552–556. doi:10.1007/s00401-003-0761-7

    Article  CAS  Google Scholar 

  47. Farooqui T (2008) Iron-induced oxidative stress modulates olfactory learning and memory in honeybees. Behav Neurosci 122:433–447. doi:10.1037/0735-7044.122.2.433

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the China Agriculture Research System (No. CARS-45), the Agro-scientific Research in the Public Interest (No. 200903006) and the National Natural Science Foundation (No. 31172275) in China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xingqi Guo or Baohua Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_1652_MOESM1_ESM.tif

Fig. 1: Properties and sequence analysis of AccCacyBP. A: The comparison of the deduced amino acid sequence of Apis cerana cerana calcyclin binding protein (AccCacyBP) with its homologs: AmelCacyBP (Apis mellifera, XP396161), CfCacyBP (Camponotus floridanus, EFN69732), AeCacyBP (Acromyrmex echinatior, EGI62763), HsCacyBP (Homo sapiens, AAH67823), RnCacyBP (Rattus norvegicus, NP001004208). Identical or conserved amino acids are shaded in black or gray, respectively. The predicted domains are shown with letters (A, B and C) on the top of the sequences. Schematic representation of AccCacyBP indicates the binding sites of its ligands and numbers indicate the position of amino acid residues. B: The phylogenetic relationships of AccCacyBP and other CacyBP proteins. Numbers above or below branch nodes represent the confidence level of posterior probability. The sequences used are as follows: DrCacyBP (Danio rerio, NP998052), IfCacyBP (Ictalurus furcatus, ADO28075), SsCacyBP (Salmo salar, ACN10387), CfCacyBP (Camponotus floridanus, EFN69732), AmelCacyBP (Apis mellifera, XP396161), AeCacyBP (Acromyrmex echinatior, EGI62763), HsaCacyBP (Harpegnathos saltator, EFN81395), CqCacyBP (Culex quinquefasciatus, XP001868830), MmCacyBP (Mus musculus, NP033916), RnCacyBP (Rattus norvegicus, NP001004208), HsCacyBP (Homo sapiens, AAH67823), AtCacyBP (Arabidopsis thaliana, NP564346), ElCacyBP (Esox lucius, ACO13192). (TIFF 5968 kb)

11033_2012_1652_MOESM2_ESM.tif

Fig. 2: The nucleotide sequence and putative transcription factor-binding sites of the 5′-flanking region of AccCacyBP. The translation (ATG) and transcription start sites are marked with arrows. The transcription factor-binding sites are boxed. (TIFF 2964 kb)

Supplementary material 3 (DOC 112 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, X., Lu, W., Sun, R. et al. Identification and characterization of a novel calcyclin binding protein (CacyBP) gene from Apis cerana cerana . Mol Biol Rep 39, 8053–8063 (2012). https://doi.org/10.1007/s11033-012-1652-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1652-6

Keywords

Navigation