Skip to main content
Log in

Isolation of a CENTRORADIALIS/TERMINAL FLOWER1 homolog in saffron (Crocus sativus L.): characterization and expression analysis

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Genes in the phosphatidyl-ethanolamine-binding protein (PEBP) family are instrumental in regulating the fate of meristems and flowering time. To investigate the role of these genes in the monocotyledonous plant Crocus (Crocus sativus L), an industrially important crop cultivated for its nutritional and medicinal properties, we have cloned and characterized a CENTRORADIALIS/TERMINAL FLOWER1 (CEN/TFL1) like gene, named CsatCEN/TFL1-like, the first reported CEN/TFL1 gene characterized from such a perennial geophyte. Sequence analysis revealed that CsatCEN/TFL1 shows high similarity to its homologous PEBP family genes CEN/TFL1, FT and MFT from a variety of plant species and maintains the same exon/intron organization. Phylogenetic analysis of the CsatCEN/TFL1 amino acid sequence confirmed that the isolated sequences belong to the CEN/TFL1 clade of the PEBP family. CsatCEN/TFL1 transcripts could be detected in corms, flower and flower organs but not in leaves. An alternative spliced transcript was also detected in the flower. Comparison of expression levels of CsatCEN/TFL1 and its alternative spliced transcript in wild type flower and a double flower mutant showed no significant differences. Overexpression of CsatCEN/TFL1 transcript in Arabidopsis tfl1 plants reversed the phenotype of early flowering and terminal flowering of the tfl1 plants to a normal one. Computational analysis of the obtained promoter sequences revealed, next to common binding motifs in CEN/TFL1-like genes as well as other flowering gene promoters, the presence of two CArG binding sites indicative of control of CEN/TFL1 by MADS-box transcription factors involved in crocus flowering and flower organ formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CEN:

CENTRORADIALIS

PEBP:

Phosphatidylethanolamine binding protein

TFL1:

TERMINAL FLOWER1

References

  1. Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379(6568):791–797

    Article  PubMed  CAS  Google Scholar 

  2. Moon J, Lee H, Kim M, Lee I (2005) Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol 46(2):292–299

    Article  PubMed  CAS  Google Scholar 

  3. Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275(5296):80–83

    Article  PubMed  CAS  Google Scholar 

  4. Yeung K, Seitz T, Li S, Janosch P, McFerran B, Kaiser C, Fee F, Katsanakis KD, Rose DW, Mischak H, Sedivy JM, Kolch W (1999) Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP. Nature 401(6749):173–177

    Article  PubMed  CAS  Google Scholar 

  5. Ohshima S, Murata M, Sakamoto W, Ogura Y, Motoyoshi F (1997) Cloning and molecular analysis of the Arabidopsis gene Terminal Flower 1. Mol Gen Genet 254(2):186–194

    Article  PubMed  CAS  Google Scholar 

  6. Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127(4):725–734

    PubMed  CAS  Google Scholar 

  7. Hanano S, Goto K (2011) Arabidopsis TERMINAL FLOWER1 is involved in the regulation of flowering time and inflorescence development through transcriptional repression. Plant Cell 23(9):3172–3184

    Article  PubMed  CAS  Google Scholar 

  8. Hanzawa Y, Money T, Bradley D (2005) A single amino acid converts a repressor to an activator of flowering. Proc Natl Acad Sci USA 102(21):7748–7753

    Article  PubMed  CAS  Google Scholar 

  9. Banfield MJ, Brady RL (2000) The structure of Antirrhinum centroradialis protein (CEN) suggests a role as a kinase regulator. J Mol Biol 297(5):1159–1170

    Article  PubMed  CAS  Google Scholar 

  10. Sohn EJ, Rojas-Pierce M, Pan S, Carter C, Serrano-Mislata A, Madueno F, Rojo E, Surpin M, Raikhel NV (2007) The shoot meristem identity gene TFL1 is involved in flower development and trafficking to the protein storage vacuole. Proc Natl Acad Sci USA 104(47):18801–18806

    Article  PubMed  CAS  Google Scholar 

  11. Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005) The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309(5741):1694–1696

    Article  PubMed  CAS  Google Scholar 

  12. Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125(9):1609–1615

    PubMed  CAS  Google Scholar 

  13. Pnueli L, Carmel-Goren L, Hareven D, Gutfinger T, Alvarez J, Ganal M, Zamir D, Lifschitz E (1998) The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 125(11):1979–1989

    PubMed  CAS  Google Scholar 

  14. Kardailsky I, Shukla VK, Ahn JH, Dagenais N, Christensen SK, Nguyen JT, Chory J, Harrison MJ, Weigel D (1999) Activation tagging of the floral inducer FT. Science 286(5446):1962–1965

    Article  PubMed  CAS  Google Scholar 

  15. Danilevskaya ON, Meng X, Hou Z, Ananiev EV, Simmons CR (2008) A genomic and expression compendium of the expanded PEBP gene family from maize. Plant Physiol 146(1):250–264

    Article  PubMed  CAS  Google Scholar 

  16. Nakagawa M, Shimamoto K, Kyozuka J (2002) Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29(6):743–750

    Article  PubMed  CAS  Google Scholar 

  17. Endo-Higashi N, Izawa T (2011) Flowering time genes Heading date 1 and Early heading date 1 together control panicle development in rice. Plant Cell Physiol 52(6):1083–1094

    Article  PubMed  CAS  Google Scholar 

  18. Grilli Caiola M, Caputo P, Zanier R (2004) RAPD analysis in Crocus sativus L. accessions and related Crocus species. Biol Plant 48(3):375–380

    Article  Google Scholar 

  19. Ghaffari S, Baghery A (2009) Stigma variability in saffron (Crocus sativus L.). Afr J Biotechnol 8(4):601–604

    Google Scholar 

  20. Kalivas A, Pasentsis K, Polidoros AN, Tsaftaris AS (2007) Heterotopic expression of B-class floral homeotic genes PISTILLATA/GLOBOSA supports a modified model for crocus (Crocus sativus L.) flower formation. DNA Seq 18(2):120–130

    Article  PubMed  CAS  Google Scholar 

  21. Tsaftaris AS, Polidoros AN, Pasentsis K, Kalyvas A (2006) Tepal formation and expression pattern of B-class paleoAP3-like MADS-box genes in crocus (Crocus sativus L.). Plant Sci 170:238–246

    Article  CAS  Google Scholar 

  22. Tsaftaris AS, Pasentsis K, Polidoros AN (2005) Isolation of a differentially spliced C-type flower specific AG-like MADS-box gene from crocus (Crocus sativus) and characterization of its expression. Biol Plant 49:499–504

    Article  CAS  Google Scholar 

  23. Tsaftaris AS, Pasentsis K, Iliopoulos I, Polidoros AN (2004) Isolation of three homologous AP1-like MADS-box genes in crocus (Crocus sativus L.) and characterization of their expression. Plant Sci 166:1235–1243

    Article  CAS  Google Scholar 

  24. Chen D, Guo B, Hexige S, Zhang T, Shen D, Ming F (2007) SQUA-like genes in the orchid Phalaenopsis are expressed in both vegetative and reproductive tissues. Planta 226(2):369–380

    Article  PubMed  CAS  Google Scholar 

  25. Preston JC, Kellogg EA (2006) Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae). Genetics 174(1):421–437

    Article  PubMed  CAS  Google Scholar 

  26. Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3(9):877–892

    PubMed  CAS  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408

    Article  PubMed  CAS  Google Scholar 

  28. Ramakers C, Ruijter JM, Deprez RH, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66

    Article  PubMed  CAS  Google Scholar 

  29. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  PubMed  CAS  Google Scholar 

  30. Gordon D (2003) Viewing and editing assembled sequences using Consed. Curr Protoc Bioinform Chapter 11:Unit 11

    Google Scholar 

  31. Thompson JD, Higgins DG, Gibson TJ (1994) ClustalW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  32. Ahn JH, Miller D, Winter VJ, Banfield MJ, Lee JH, Yoo SY, Henz SR, Brady RL, Weigel D (2006) A divergent external loop confers antagonistic activity on floral regulators FT and TFL1. EMBO J 25(3):605–614

    Article  PubMed  CAS  Google Scholar 

  33. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    PubMed  CAS  Google Scholar 

  34. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5(2):150–163

    Article  PubMed  CAS  Google Scholar 

  35. Argiriou A, Michailidis G, Tsaftaris AS (2008) Characterization and expression analysis of TERMINAL FLOWER1 homologs from cultivated alloteraploid cotton (Gossypium hirsutum) and its diploid progenitors. J Plant Physiol 165(15):1636–1646

    Article  PubMed  CAS  Google Scholar 

  36. Frizzi G, Miranda M, Pantani C, Tammaro F (2007) Allozyme differentiation in four species of the Crocus cartwrightianus group and in cultivated saffron (Crocus sativus). Biochem Syst Ecol 35(12):859–868

    Article  CAS  Google Scholar 

  37. Grilli Caiola M (2005) Embryo origin and development in Crocus sativus L. (Iridaceae). Plant Biosystems 139(3):335–343

    Article  Google Scholar 

  38. Grilli Caiola M, Leonardi D, Canini A (2010) Seed structure in Crocus sativus L. x, C. cartwrightianus Herb., C. thomasii Ten., and C. hadriaticus Herb. at SEM. Plant Syst Evol 285(1–2):111–120

  39. Wang YQ, Melzer R, Theissen G (2011) A double-flowered variety of lesser periwinkle (Vinca minor fl. pl.) that has persisted in the wild for more than 160 years. Ann Bot 107(9):1445–1452

    Article  PubMed  Google Scholar 

  40. Liu N, Sliwinski MK, Correa R, Baum DA (2011) Possible contributions of TERMINAL FLOWER 1 to the evolution of rosette flowering in Leavenworthia (Brassicaceae). New Phytol 189(2):616–628

    Article  PubMed  CAS  Google Scholar 

  41. Kaufmann K, Wellmer F, Muino JM, Ferrier T, Wuest SE, Kumar V, Serrano-Mislata A, Madueno F, Krajewski P, Meyerowitz EM, Angenent GC, Riechmann JL (2010) Orchestration of floral initiation by APETALA1. Science 328(5974):85–89

    Article  PubMed  CAS  Google Scholar 

  42. Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    Article  PubMed  CAS  Google Scholar 

  43. Tsaftaris AS, Polidoros AN, Pasentsis K, Kalivas A (2007) Cloning, structural characterization, and phylogenetic analysis of flower MADS-box genes from crocus (Crocus sativus L.). Sci World J 7:1047–1062

    Article  Google Scholar 

  44. Ruonala R, Rinne PL, Kangasjarvi J, van der Schoot C (2008) CENL1 expression in the rib meristem affects stem elongation and the transition to dormancy in Populus. Plant Cell 20(1):59–74

    Article  PubMed  CAS  Google Scholar 

  45. Melzer R, Theissen G (2009) Reconstitution of ‘floral quartets’ in vitro involving class B and class E floral homeotic proteins. Nucleic Acids Res 37(8):2723–2736

    Article  PubMed  CAS  Google Scholar 

  46. Simon R, Igeno MI, Coupland G (1996) Activation of floral meristem identity genes in Arabidopsis. Nature 384(6604):59–62

    Article  PubMed  CAS  Google Scholar 

  47. Jensen CS, Salchert K, Nielsen KK (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125(3):1517–1528

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Yiannis Patsios for his help in collecting plant material in the field and Dr. Jonathan Rhodes for critically reviewing the manuscript. Continuous support for the Institute of Agrobiotechnology/CERTH from the General Secretariat of Research and Technology of Greece is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Tsaftaris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2012_1634_MOESM1_ESM.jpg

Figure S1 (A) Genomic organization of CEN/TFL1-like gene and promoter analysis. Bindings elements are indicated boxed with different colors. Grey boxes with numbers inside indicate the four exons and their respective size. TSS: Transcription Start Site. (B) Promoter sequence. Predicted bindings sites are grey boxed. Putative TATA box in underlined. ATG start codon is in bold. (C). Comparison of the frequencies of the putative binding sites found in CEN/TFL1 and FT promoters from rice and Arabidopsis. (D) Schematic representation of Crocus, Rice and Arabidopsis promoters. Putative binding sites are indicated in different color and shapes as in (C) (JPEG 1711 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsaftaris, A., Pasentsis, K., Kalivas, A. et al. Isolation of a CENTRORADIALIS/TERMINAL FLOWER1 homolog in saffron (Crocus sativus L.): characterization and expression analysis. Mol Biol Rep 39, 7899–7910 (2012). https://doi.org/10.1007/s11033-012-1634-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-1634-8

Keywords

Navigation