Skip to main content
Log in

Expression pattern of embryonic stem cell markers in DFAT cells and ADSCs

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Mature adipocytes can revert to a more primitive phenotype and gain cell proliferative ability under the condition of ceiling method, named dedifferentiated fat cells (DFAT cells). These cells exhibit multilineage potential as adipose tissue-derived stromal cells (ADSCs). However, the stem molecular signature of DFAT cells and the difference distinct from ADSCs are still not sure. To study the molecular signature of DFAT cells better, highly purified mature adipocytes were obtained from rats and the purity was more than 98%, and about 98.6% were monocytes. These mature adipocytes dedifferentiated into fibroblast-like cells spontaneously by the ceiling culture method, these cells proliferated rapidly in vitro, grew in the same direction and formed vertex, and expressed extensively embryonic stem cell markers such as Oct4, Sox2, c-Myc, and Nanog, surface antigen SSEA-1, CD105, and CD31, moreover, these cells possessed ALP and telomerase activity. The expression level was Oct4 1.3%, Sox2 1.3%, c-Myc 1.2%, Nanog 1.2%, CD105 0.6%, CD31 0.6% and SSEA-1 0.4%, respectively, which was lower than that in ADSCs, but the purity of DFAT cells was much higher than that of ADSCs. In conclusion, DFAT cells is a highly purified stem cell population, and expressed some embryonic stem cell markers like ADSCs, which seems to be a good candidate source of adult stem cells for the future cell replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  PubMed  CAS  Google Scholar 

  2. Ohgushi H, Caplan AI (1999) Stem cell technology and bioceramics: from cell to gene engineering. Biomed Mater Res 48:913–927

    Article  CAS  Google Scholar 

  3. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

  4. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells.Mol. Biol Cell 13:4279–4295

    CAS  Google Scholar 

  5. Allen RE, Temm-Grove CJ, Sheehan SM, Rice G (1997) Skeletal muscle satellite cell cultures. Methods Cell Biol 52:155–176

    Article  PubMed  CAS  Google Scholar 

  6. Jackson KA, Mi T, Goodell MA (1999) Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 96:14482–14486

    Article  PubMed  CAS  Google Scholar 

  7. Williams JT, Southerland SS, Souza J, Calcutt AF, Cartledge RG (1999) Cells isolated from adult human skeletal muscle capable of differentiating into multiple mesodermal phenotypes. Am Surg 65:22–26

    PubMed  CAS  Google Scholar 

  8. Wada MR, Inagawa-Ogashiwa M, Shimizu S, Yasumoto S, Hashimoto N (2002) Generation of different fates from multipotent muscle stem cells. Development 129:2987–2995

    PubMed  CAS  Google Scholar 

  9. Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74

    Article  PubMed  CAS  Google Scholar 

  10. Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226:507–520

    CAS  Google Scholar 

  11. Chambers I, Tomlinson SR (2009) The transcriptional foundation of pluripotency. Development 136:2311–2322

    Article  PubMed  CAS  Google Scholar 

  12. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG, Gifford DK, Melton DA, Jaenisch R, Young RA (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    Article  PubMed  CAS  Google Scholar 

  13. Loh YH, Wu Q, Chew JL, Vega VB, Zhang W, Chen X, Bourque G, George J, Leong B, Liu J, Wong KY, Sung KW, Lee CW, Zhao XD, Chiu KP, Lipovich L, Kuznetsov VA, Robson P, Stanton LW, Wei CL, Ruan Y, Lim B, Ng HH (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 38:431–440

    Article  PubMed  CAS  Google Scholar 

  14. Silva J, Smith A (2008) Capturing pluripotency. Cell 132:532–536

    Article  PubMed  CAS  Google Scholar 

  15. Gimble J, Guilak F (2003) Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy 5:362–369

    Article  PubMed  Google Scholar 

  16. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F (2002) Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun 290:763–769

    Article  PubMed  CAS  Google Scholar 

  17. Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE (2002) Neurogenic differentiation of murine and human adipose derived stromal cells. Biochem Biophys Res Commun 294:371–379

    Article  PubMed  CAS  Google Scholar 

  18. Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL, Paschalis EP, Wilkison WO, Gimble JM (2001) Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng 7:729–741

    Article  PubMed  CAS  Google Scholar 

  19. Nishida S, Endo N, Yamagiwa H, Tanizawa T, Takahashi HE (1999) Number of osteoprogenitor cells in human bone marrow markedly decreases after skeletal maturation. Bone Miner Metab 17:171–177

    Article  CAS  Google Scholar 

  20. Mueller SM, Glowacki J (2001) Age-related decline in the osteogenic potential of human bone marrow cells cultured in three-dimensional collagen sponges. Cell Biochem 82:583–590

    Article  CAS  Google Scholar 

  21. Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33:919–926

    Article  PubMed  Google Scholar 

  22. Rubinstein BP, Rosenfield RE, Adamson JW, Stevens CE (1993) Stored placental blood for unrelated bone marrow reconstitution. Blood 81:1679–1690

    PubMed  CAS  Google Scholar 

  23. Mareschi K, Biasin E, Piacibello W, Aglietta M, Madon E, Fagioli F (2001) Isolation of human mesenchymal stem cells: bone marrow versus umbilical cord blood. Haematologica 86:1099–1100

    PubMed  CAS  Google Scholar 

  24. Wexler SA, Donaldson C, Denning-Kendall P, Rice C, Bradley B, Hows JM (2003) Adult bone marrow is a rich source of human mesenchymal stem cells but umbilical cord blood and mobilized adult blood are not. Br J Haematol 121:368–374

    Article  PubMed  Google Scholar 

  25. Bieback K, Kern S, Klüter H, Eichler H (2004) Critical parameters for the isolation of mesenchymal stem cells from umbilical cord blood. Stem Cells 22:625–634

    Article  PubMed  Google Scholar 

  26. Erices A, Conget P, Minguell JJ (2000) Mesenchymal progenitor cells in human umbilical cord blood. Br J Hematol 109:235–242

    Article  CAS  Google Scholar 

  27. Goodwin HS, Bicknese AR, Chien SN, Bogucki BD, Quinn CO, Wall DA (2001) Multilineage differentiation activity by cells isolated from umbilical cord blood: expression of bone, fat, and neural markers. Biol Blood Marrow Transpl 7:581–588

    Article  CAS  Google Scholar 

  28. Lee OK, Kuo TK, Chen WM, Lee KD, Hsieh SL, Chen TH (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103:1669–1675

    Article  PubMed  CAS  Google Scholar 

  29. Kögler G, Sensken S, Airey JA et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. Exp Med 200:123–135

    Article  Google Scholar 

  30. Cowan CM, Shi YY, Aalami OO, Chou YF, Mari C, Thomas R, Quarto N, Contag CH, Wu B, Longaker MT (2004) Adipose-derived adult stromal cells heal critical-size mouse calvarial defects. Nat Biotechnol 22:560–567

    Article  PubMed  CAS  Google Scholar 

  31. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA (2006) Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Cell Biochem 99:1285–1297

    Article  CAS  Google Scholar 

  32. Zhu YX, Liu TQ, Song KD, Fan X, Ma X, Cui Z (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675

    Article  PubMed  CAS  Google Scholar 

  33. Berstine EG, Hooper ML, Grandchamp S, Ephrussi B (1973) Alkaline phosphatase activity in mouse teratoma. Proc Natl Acad Sci USA 70:3899–3903

    Article  PubMed  CAS  Google Scholar 

  34. Lin GT, Garcia M, Ning HX, Banie L, Guo YL, Lue TF, Lin CS (2008) Defining stem and progenitor cells within adipose tissue. Stem Cell Dev 17:1053–1064

    Article  CAS  Google Scholar 

  35. D’Ippolito G, Diabira S, Howard GA, Menei P, Roos BA, Schiller PC (2004) Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. Cell Sci 117:2971–2981

    Article  Google Scholar 

  36. Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49

    Article  PubMed  CAS  Google Scholar 

  37. Pallante BA, Duignan I, Okin D, Chin A, Bressan MC, Mikawa T, Edelberg JM (2007) Bone marrow Oct3/4+ cells differentiate into cardiac myocytes via age-dependent paracrine mechanisms. Circ Res 100:e1–e11

    Article  PubMed  CAS  Google Scholar 

  38. Goolsby J, Marty MC, Heletz D et al (2003) Hematopoietic progenitors express neural genes. Proc Natl Acad Sci USA 100:14926–14931

    Article  PubMed  CAS  Google Scholar 

  39. Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, Muceniece R, Ancans J (2009) Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev Rep 5:378–386

    Article  CAS  Google Scholar 

  40. Peronia D, Scambia I, Pasinib A, Lisi V, Bifari F, Krampera M, Rigotti G, Sbarbati A, Galiè M (2008) Stem molecular signature of adipose-derived stromal cells. Exp Cell Res 314(3):603–615

    Article  Google Scholar 

  41. Yagi K, Kondo D, Okazaki Y, Kano K (2004) A novel preadipocyte cell line established from mouse adult mature adipocytes. Biochem Biophys Res Commun 321:967–974

    Article  PubMed  CAS  Google Scholar 

  42. Nobusue H, Endo T, Kano K (2008) Establishment of a preadipocyte cell line derived from mature adipocytes of GFP transgenic mice and formation of adipose tissue. Cell Tissue Res 332:435–446

    Article  PubMed  CAS  Google Scholar 

  43. Nobusue H, Kano K (2010) Establishment and characteristics of porcine preadipocyte cell lines derived from mature adipocytes. J Cell Biochem 109:542–552

    PubMed  CAS  Google Scholar 

  44. Léobon B, Roncalli J, Joffre C, Mazo M, Boisson M, Barreau C, Calise D, Arnaud E, André M, Pucéat M, Pénicaud L, Prosper F, Planat-Bénard V, Casteilla L (2009) Adipose-derived cardiomyogenic cells: in vitro expansion and functional improvement in a mouse model of myocardial infarction. Cardiovasc Res 83:757–767

    Article  PubMed  Google Scholar 

  45. Pettersson P, Cigolini M, Sjostrom L, Smith U, Bjorntorp P (1984) Cells in human adipose tissue developing into adipocytes. Acta Med Scand 215:447–451

    Article  PubMed  CAS  Google Scholar 

  46. Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. Br J Cancer 96:1020–1024

    Article  PubMed  CAS  Google Scholar 

  47. Madonna R, Willerson JT, Geng YJ (2008) Myocardin a enhances telomerase activities in adipose tissue mesenchymal cells and embryonic stem cells undergoing cardiovascular myogenic differentiation. Stem Cells 26:202–211

    Article  PubMed  CAS  Google Scholar 

  48. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412–423

    Article  PubMed  CAS  Google Scholar 

  49. Shigematsu M, Watanabe H, Sugihara H (1999) Proliferation and differentiation of unilocular fat cells in the bone marrow. Cell Struct Funct 24:89–100

    Article  PubMed  CAS  Google Scholar 

  50. Justesen J, Pedersen SB, Stenderup KS, Kassem M (2004) Subcutaneous adipocytes can differentiate into bone-forming cells in vitro and in vivo. Tissue Eng 10:381–391

    Article  PubMed  CAS  Google Scholar 

  51. Tholpady SS, Aojanepong C, Llull R, Jeong JH, Mason AC, Futrell JW, Ogle RC, Katz AJ (2005) The cellular plasticity of human adipocytes. Ann Plast Surg 54:651–656

    Article  PubMed  CAS  Google Scholar 

  52. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M, Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656–663

    Article  PubMed  Google Scholar 

  53. Ailhaud G, Grimaldi P, Negrel R (1992) Cellular and molecular aspects of adipose tissue development. Annu Rev Nutr 12:207–233

    Article  PubMed  CAS  Google Scholar 

  54. Klaus S, Cassard-Doulcier AM, Ricquier D (1991) Development of Phodopus sungorus brown preadipocytes in primary cell culture: effect of an atypical beta-adrenergic agonist, insulin, and triiodothyronine on differentiation, mitochondrial development, and expression of the uncoupling protein UCP. J Cell Biol 115:1783–1790

    Article  PubMed  CAS  Google Scholar 

  55. Tang W, Zeve D, Suh JM, Bosnakovski D, Kyba M, Hammer RE, Tallquist MD, Graff JM (2008) White fat progenitor cells reside in the adipose vasculature. Science 322:583–586

    Article  PubMed  CAS  Google Scholar 

  56. Boyer LA, Mathur D, Jaenisch R (2006) Molecular control of pluripotency. Curr OpinGenet Dev 16:455–462

    Article  CAS  Google Scholar 

  57. Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka R (2006) Dissecting self-renewal in stem cells with RNA interference. Nature 442:533–538

    Article  PubMed  CAS  Google Scholar 

  58. Villinger F, Rowe T, Parekh BS, Green TA, Mayne AE, Grimm B, McClure HM, Lackner AA, Dailey PJ, Ansari AA, Folks TM (2001) Chronic immune stimulation accelerates SIV-induced disease progression. J Med Primatol 30:254–259

    Article  PubMed  CAS  Google Scholar 

  59. Remenyi A, Lins K, Nissen LJ, Reinbold R, Scholer HR, Wilmanns M (2003) Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. Genes Dev 17:2048–2059

    Article  PubMed  CAS  Google Scholar 

  60. Pesce M, Wang X, Wolgemuth DJ, Schöler H (1998) Differential expression of the Oct-4 transcription factor during mouse germ cell differentiation. Mech Dev 71:89–98

    Article  PubMed  CAS  Google Scholar 

  61. Li Y, McClintick J, Zhong L, Edenberg HJ, Yoder MC, Chan RJ (2005) Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood 105:635–637

    Article  PubMed  CAS  Google Scholar 

  62. Cartwright P, McLean C, Sheppard A, Rivett D, Jones K, Dalton S (2005) LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development 132:885–896

    Article  PubMed  CAS  Google Scholar 

  63. Matsumoto T, Kano K, Kondo D, Fukuda N, Iribe Y, Tanaka N, Matsubara Y, Sakuma T, Satomi A, Otaki M, Ryu J, Mugishima H (2008) Mature adipocyte-derived dedifferentiated fat cells exhibit multilineage potential. J Cell Physiol 215:210–222

    Article  PubMed  CAS  Google Scholar 

  64. Kazama T, Fujie M, Endo T, Kano K (2008) Mature adipocyte-derived dedifferentiated fat cells can transdifferentiate into skeletal myocytes in vitro. Biochem Biophys Res Commun 377:780–785

    Article  PubMed  CAS  Google Scholar 

  65. Oki Y, Watanabe S, Endo T, Kano K (2008) Mature adipocyte-derived dedifferentiated fat cells can trans-differentiate into osteoblasts in vitro and in vivo only by all-trans retinoic acid. Cell Struct Funct 33:211–222

    Article  PubMed  CAS  Google Scholar 

  66. Ohta Y, Takenaga M, Tokura Y, Hamaguchi A, Matsumoto T, Kano K, Mugishima H, Okano H, Igarashi R (2008) Mature adipocyte-derived cells, dedifferentiated fat cells (DFAT) promoted functional recovery from spinal cord injury-induced motor dysfunction in rats. Cell Transpl 17:877–886

    Article  Google Scholar 

  67. Sakuma T, Matsumoto T, Kano K, Fukuda N, Obinata D, Yamaguchi K, Yoshida T, Takahashi S, Mugishima H (2009) Mature adipocyte derived, dedifferentiated fat cells can differentiate into smooth muscle-like cells and contribute to bladder tissue regeneration. J Urol 182:355–365

    Article  PubMed  Google Scholar 

  68. Jumabay M, Matsumoto T, Yokoyama S, Kano K, Kusumi Y, Masuko T, Mitsumata M, Saito S, Hirayama A, Mugishima H, Fukuda N (2009) Dedifferentiated fat cells convert to cardiomyocyte phenotype and repair infarcted cardiac tissue in rats. J Mol Cell Cardiol 47:565–575

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by grant from the Key and Specific National Project for Creating New Biological Species Transgenically (No. 2009ZX08009-157B, 2008ZX08006-005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gongshe Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Q., Zhao, L., Song, Z. et al. Expression pattern of embryonic stem cell markers in DFAT cells and ADSCs. Mol Biol Rep 39, 5791–5804 (2012). https://doi.org/10.1007/s11033-011-1371-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1371-4

Keywords