Skip to main content
Log in

Identification of an intronic cis-acting element in the human dopamine transporter gene

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The human dopamine transporter gene (hDAT) encodes the dopamine transporter in dopamine (DA) neurons to regulate DA transmission. hDAT expression varies significantly from neuron to neuron, and from individual to individual so that dysregulation of hDAT is related to many neuropsychiatric disorders. It is critical to identify hDAT-specific cis-acting elements that regulate the hDAT expression. Previous studies showed that hDAT Intron 1 displayed inhibitory activity for reporter gene expression. Here we report that the hDAT Intron 1 contains a 121-bp fragment that down-regulated both SV40 and hDAT promoter activities by 80% in vitro. Subfragments of 121-bp still down-regulated the SV40 promoter but not the hDAT promoter, as supported by nuclear protein-binding activities. Collectively, 121-bp is a silencer in vitro that might coordinate with transcriptional activities both inside and outside 121-bp in regulation of hDAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hitri A, Hurd YL, Wyatt RJ, Deutsch SI (1994) Molecular, functional and biochemical characteristics of the dopamine transporter: regional differences and clinical relevance. Clin Neuropharmacol 17:1–22

    Article  PubMed  CAS  Google Scholar 

  2. Ohyama K, Sogawa C, Sogawa N, Morita K, Dohi T, Kitayama S (2010) Nicotine stimulates transcriptional activity of the human dopamine transporter gene. Neurosci Lett 471:34–37

    Article  PubMed  CAS  Google Scholar 

  3. Stevens SE, Kumsta R, Kreppner JM, Brookes KJ, Rutter M, Sonuga-Barke EJ (2009) Dopamine transporter gene polymorphism moderates the effects of severe deprivation on ADHD symptoms: developmental continuities in gene–environment interplay. Am J Med Genet B 150B:753–761

    Article  CAS  Google Scholar 

  4. Lin Z, Canales JJ, Björgvinsson T, Thomsen M, Qu H, Liu QR, Torres GE, Caine SB (2011) Monoamine transporters vulnerable and vital doorkeepers. Prog Mol Biol Transl Sci 98:1–46

    Article  PubMed  CAS  Google Scholar 

  5. Bannon MJ, Whitty CJ (1997) Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology 48:969–977

    PubMed  CAS  Google Scholar 

  6. Hurd YL, Pristupa ZB, Herman MM, Niznik HB, Kleinman JE (1994) The dopamine transporter and dopamine D2 receptor messenger RNAs are differentially expressed in limbic- and motor-related subpopulations of human mesencephalic neurons. Neuroscience 63:357–362

    Article  PubMed  CAS  Google Scholar 

  7. Lee KH, Kwak YD, Kim DH, Chang MY, Lee YS (2004) Human zinc finger protein 161, a novel transcriptional activator of the dopamine transporter. Biochem Biophys Res Commun 313:969–976

    Article  PubMed  CAS  Google Scholar 

  8. Sacchetti P, Brownschidle LA, Granneman JG, Bannon MJ (1999) Characterization of the 5′-flanking region of the human dopamine transporter gene. Brain Res Mol Brain Res 74:167–174

    Article  PubMed  CAS  Google Scholar 

  9. Wang J, Michelhaugh SK, Bannon MJ (2007) Valproate robustly increases Sp transcription factor-mediated expression of the dopamine transporter gene within dopamine cells. Eur J Neurosci 25:1982–1986

    Article  PubMed  Google Scholar 

  10. Xing G, Zhang L, Heynen T, Li XL, Smith MA, Weiss SR, Feldman AN, Detera-Wadleigh S, Chuang DM, Post RM (1997) Rat nurr1 is prominently expressed in perirhinal cortex, and differentially induced in the hippocampal dentate gyrus by electroconvulsive vs. kindled seizures. Brain Res Mol Brain Res 47:251–261

    Article  PubMed  CAS  Google Scholar 

  11. Yokoro K, Yanagidani A, Obata T, Yamamoto S, Numoto M (1998) Genomic cloning and characterization of the mouse POZ/zinc-finger protein ZF5. Biochem Biophys Res Commun 246:668–674

    Article  PubMed  CAS  Google Scholar 

  12. Greenwood TA, Kelsoe JR (2003) Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene. Genomics 82:511–520

    Article  PubMed  CAS  Google Scholar 

  13. Kouzmenko AP, Pereira AM, Singh BS (1997) Intronic sequences are involved in neural targeting of human dopamine transporter gene expression. Biochem Biophys Res Commun 240:807–811

    Article  PubMed  CAS  Google Scholar 

  14. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  15. Lin Z, Walther D, Yu XY, Li S, Drgon T, Uhl GR (2005) SLC18A2 promoter haplotypes and identification of a novel protective factor against alcoholism. Hum Mol Genet 14:1393–1404

    Article  PubMed  CAS  Google Scholar 

  16. Lin Z, Zhao Y, Chung CY, Zhou Y, Xiong N, Glatt CE, Isacson O (2010) High regulatability favors genetic selection in SLC18A2, a vesicular monoamine transporter essential for life. FASEB J 24:2191–2200

    Article  PubMed  CAS  Google Scholar 

  17. Wang J, Bannon MJ (2005) Sp1 and Sp3 activate transcription of the human dopamine transporter gene. J Neurochem 93:474–482

    Article  PubMed  CAS  Google Scholar 

  18. Bai Q, Burton EA (2009) Cis-acting elements responsible for dopaminergic neuron-specific expression of zebrafish slc6a3 (dopamine transporter) in vivo are located remote from the transcriptional start site. Neuroscience 164:1138–1151

    Article  PubMed  CAS  Google Scholar 

  19. Chen YC, Lin SI, Chen YK, Chiang CS, Liaw GJ (2009) The Torso signaling pathway modulates a dual transcriptional switch to regulate tailless expression. Nucleic Acids Res 37:1061–1072

    Article  PubMed  CAS  Google Scholar 

  20. Adkins NL, Hagerman TA, Georgel P (2006) GAGA protein: a multi-faceted transcription factor. Biochem Cell Biol 84:559–567

    Article  PubMed  CAS  Google Scholar 

  21. Gonzalez-Lamothe R, Boyle P, Dulude A, Roy V, Lezin-Doumbou C, Kaur GS, Bouarab K, Després C, Brisson N (2008) The transcriptional activator Pti4 is required for the recruitment of a repressosome nucleated by repressor SEBF at the potato PR-10a gene. Plant Cell 20:3136–3147

    Article  PubMed  CAS  Google Scholar 

  22. Ikeda M, Mitsuda N, Ohme-Takagi M (2009) Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning. Plant Cell 21:3493–3505

    Article  PubMed  CAS  Google Scholar 

  23. Forsberg M, Westin G (1991) Enhancer activation by a single type of transcription factor shows cell type dependence. EMBO J 10:2543–2551

    PubMed  CAS  Google Scholar 

  24. Glaser G, Vogel M, Wolf H, Niller HH (1998) Regulation of the Epstein-Barr viral immediate early BRLF1 promoter through a distal NF1 site. Arch Virol 143:1967–1983

    Article  PubMed  CAS  Google Scholar 

  25. Hall FS, Sora I, Uhl GR (2003) Sex-dependent modulation of ethanol consumption in vesicular monoamine transporter 2 (VMAT2) and dopamine transporter (DAT) knockout mice. Neuropsychopharmacology 28:620–628

    Article  PubMed  Google Scholar 

  26. Morice E, Denis C, Giros B, Nosten-Bertrand M (2010) Evidence of long-term expression of behavioral sensitization to both cocaine and ethanol in dopamine transporter knockout mice. Psychopharmacology 208:57–66

    Article  PubMed  CAS  Google Scholar 

  27. Salahpour A, Medvedev IO, Beaulieu JM, Gainetdinov RR, Caron MG (2007) Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol Psychiatry 61:65–69

    Article  PubMed  CAS  Google Scholar 

  28. Savelieva KV, Caudle WM, Findlay GS, Caron MG, Miller GW (2002) Decreased ethanol preference and consumption in dopamine transporter female knock-out mice. Alcohol Clin Exp Res 26:758–764

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. A. P. Kouzmenko for providing a genomic clone. This research was supported by U.S. National Institutes of Health grant R01DA021409 (to Z.L.), by a Foundation for University Yong Key Teacher by The Education Department of Henan Province China, 2008 (to YZ), and National Nature Science Fundation of China 81100956 (to YZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Lin.

Additional information

Ying Zhao and Yanhong Zhou contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Zhou, Y., Xiong, N. et al. Identification of an intronic cis-acting element in the human dopamine transporter gene. Mol Biol Rep 39, 5393–5399 (2012). https://doi.org/10.1007/s11033-011-1339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1339-4

Keywords

Navigation