Skip to main content
Log in

Malondialdehyde plasma concentration correlates with declarative and working memory in patients with recurrent depressive disorder

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Oxidative stress has been implicated in the cognitive decline, especially in memory impairment. The purpose of this study was to determine the concentration of malondialdehyde (MDA) in patients with recurrent depressive disorders (rDD) and to define relationship between plasma levels of MDA and the cognitive performance. The study comprised 46 patients meeting criteria for rDD. Cognitive function assessment was based on: The Trail Making Test , The Stroop Test, Verbal Fluency Test and Auditory-Verbal Learning Test. The severity of depression symptoms was assessed using the Hamilton Depression Rating Scale (HDRS). Statistically significant differences were found in the intensity of depression symptoms, measured by the HDRS on therapy onset versus the examination results after 8 weeks of treatment (P < 0.001). Considering the 8-week pharmacotherapy period, rDD patients presented better outcomes in cognitive function tests. There was no statistically significant correlation between plasma MDA levels, and the age, disease duration, number of previous depressive episodes and the results in HDRS applied on admission and on discharge. Elevated levels of MDA adversely affected the efficiency of visual-spatial and auditory-verbal working memory, short-term declarative memory and the delayed recall declarative memory. 1. Higher concentration of plasma MDA in rDD patients is associated with the severity of depressive symptoms, both at the beginning of antidepressants pharmacotherapy, and after 8 weeks of its duration. 2. Elevated levels of plasma MDA are related to the impairment of visual-spatial and auditory-verbal working memory and short-term and delayed declarative memory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Talarowska M, Florkowski A, Zboralski K, Berent D, Wierzbiński P, Gałecki P (2010) Auditory-verbal declarative and operating memory among patients suffering from depressive disorders—preliminary study. Adv Med Sci 55(2):317–327

    Article  PubMed  CAS  Google Scholar 

  2. Castaneda AE, Suvisaari J, Marttunen M, Perälä J, Saarni SI, Aalto-Setälä T, Aro H, Koskinen S, Lönnqvist J, Tuulio-Henriksson A (2008) Cognitive functioning in a population-based sample of young adults with a history of non-psychotic unipolar depressive disorders without psychiatric comorbidity. J Affect Disord 110(1–2):36–45

    Article  PubMed  CAS  Google Scholar 

  3. Gałecki P, Florkowski A, Mrowicka M, Malinowska K, Gałecka E (2007) Calcium ions, glutaminate acid, hypothalamic-pituitary-adrenal axis, calcium dependent ATP-ase as causes of oxidative damage in depression patients—Part I. Pol Merk Lek XXIII(138):466–468

    Google Scholar 

  4. Novío S, Núñez M, Amigo G, Freire-Garabal M (2011) Effects of fluoxetine on the oxidative status of peripheral blood leukocytes of restraint-stressed mice. Basic Clin Pharmacol Toxicol. doi:10.1111/j.1742-7843.2011.00736

  5. Maes M, Galecki P, Chang YS, Berk M (2011) A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry 35(3):676–692

    Article  PubMed  CAS  Google Scholar 

  6. Gałecki P, Maes M, Florkowski A, Lewiński A, Gałecka E, Bieńkiewicz M, Szemraj J (2010) An inducible nitric oxide synthase polymorphism is associated with the risk of recurrent depressive disorder. J Neurosci Lett 486(3):184–187

    Article  Google Scholar 

  7. Maes M, Leonard B, Fernandez A, Kubera M, Nowak G, Veerhuis R, Gardner A, Ruckoanich P, Geffard M, Altamura C, Galecki P, Berk M (2011) (Neuro)inflammation and neuroprogression as new pathways and drug targets in depression: from antioxidants to kinase inhibitors. Prog Neuropsychopharmacol Biol Psychiatry 35(3):659–663

    Article  PubMed  CAS  Google Scholar 

  8. Catena-Dell’Osso M, Bellantuono C, Consoli G, Baroni S, Rotella F, Marazziti D (2011) Inflammatory and neurodegenerative pathways in depression: a new avenue for antidepressant development? Curr Med Chem 18(2):245–255

    Article  PubMed  Google Scholar 

  9. Yang RL, Shi YH, Hao G, Li W, Le GW (2008) Increasing oxidative stress with progressive hyperlipidemia in human: relation between malondialdehyde and atherogenic index. J Clin Biochem Nutr 43(3):154–158

    Article  PubMed  Google Scholar 

  10. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT (2011) Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol 14(1):123–130

    Article  PubMed  CAS  Google Scholar 

  11. Teyssier JR, Ragot S, Chauvet-Gélinier JC, Trojak B, Bonin B (2011) Expression of oxidative stress-response genes is not activated in the prefrontal cortex of patients with depressive disorder. Psychiatry Res 186(2–3):244–247

    Article  PubMed  CAS  Google Scholar 

  12. Atmaca M, Kuloglu M, Tezcan E, Ustundag B (2008) Antioxidant enzyme and malondialdehyde levels in patients with social phobia. Psychiatry Res 159(1–2):95–100

    Article  PubMed  CAS  Google Scholar 

  13. Yao JK, Leonard S, Reddy R (2006) Altered glutathione redox state in schizophrenia. Dis Markers 22:83–93

    PubMed  CAS  Google Scholar 

  14. Kuloglu M, Ustundag B, Atmaca M, Canatan H, Tezcan AE, Cinkilinc N (2002) Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 20(2):171–175

    Article  PubMed  CAS  Google Scholar 

  15. Behl A, Swami G, Sircar SS, Bhatia MS, Banerjee BD (2010) Relationship of possible stress-related biochemical markers to oxidative/antioxidative status in obsessive-compulsive disorder. Neuropsychobiology 61(4):210–214

    Article  PubMed  CAS  Google Scholar 

  16. Evola M, Hall A, Wall T, Young A, Grammas P (2010) Oxidative stress impairs learning and memory in apoE knockout mice. Pharmacol Biochem Behav 96(2):181–186

    Article  PubMed  CAS  Google Scholar 

  17. Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Bandegi AR, Motamedi F, Haghighi S, Samani HR, Pahlvan S (2011) Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol May 18 [Epub ahead of print]

  18. ICD-10 Classification of Mental & Behavioural Disorders (1993) World Health Organization

  19. Patten S (1997) Performance of the composite international diagnostic interview short form for major depression in community and clinical samples. Chron Dis Can 3:18–24

    Google Scholar 

  20. Taylor D, Paton C, Kerwin R (2007) The Maudsley prescribing guidelines. Informa Healthcare, London

    Google Scholar 

  21. Reitan RM (1958) The relation of the trail making test to organic brain damage. J Cons Psychol 19:393–394

    Article  Google Scholar 

  22. Sánchez-Cubillo I, Periáñez J, Adrover-Roig D, Rodríguez-Sánchez J, Ríos-Lago M, Tirapu J (2009) Construct validity of the trail making test: role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. JINS 15:438–451

    PubMed  Google Scholar 

  23. Stroop JR (1935) Studies of interference in serial verbal reactions. J Exp Psychol 18:643–662

    Article  Google Scholar 

  24. Audenaert K, Lohorte P, Brans B, Van Laere K, Goethals I, van Heeringen K, Diereckx R (2001) The classical Stroop interference task as a prefrontal activation probe: a validation study using 99Tc’’’-ECD brain SPECT. Nucl Med Commun 22:135–143

    Article  PubMed  CAS  Google Scholar 

  25. Vendrell P, Junque C, Pujol J, Jurado MA, Molet J, Grafman J (2005) The role of prefrontal regions in Stroop task. Neuropsychologia 33:341–352

    Article  Google Scholar 

  26. Wolfram H, Neumann J, Wieczorek V (1986) Psychologische leistungstests in der neurologie und psychiatrie. VEB Georg Thieme, Leipzig

    Google Scholar 

  27. Łuria A (1976) Neuropsychology. PZWL, Warsaw

    Google Scholar 

  28. McDowd J, Hoffman L, Rozek E, Lyons KE, Pahwa R, Burns J, Kemper S (2011) Understanding verbal fluency in healthy aging, Alzheimer’s disease, and Parkinson’s disease. Neuropsychology 25(2):210–225

    Article  PubMed  Google Scholar 

  29. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23:56–62

    Article  PubMed  CAS  Google Scholar 

  30. Moonseong H, Murphy CF, Meyers BS (2007) Relationship between the hamilton depression rating scale and the Montgomery-Åsberg depression rating scale in depressed elderly. Am J Geriatr Psychiatry 15:899–905

    Article  Google Scholar 

  31. Demyttenaere K, De Fruyt J (2003) Getting what you ask for: on the selectivity of depression rating scales. Psychothery Psychosom 72:61–70

    Article  Google Scholar 

  32. Placer ZA, Cushman LL, Johnson BC (1966) Estimation of product of lipid peroxidation (malonyl dialdehyde) in biochemical systems. Anal Biochem 16:359–364

    Article  PubMed  CAS  Google Scholar 

  33. Bilici M, Efe H, Köroğlu MA, Uydu HA, Bekaroğlu M, Değer O (2001) Antioxidative enzyme activities and lipid peroxidation in major depression: alterations by antidepressant treatments. J Affect Disord 64(1):43–51

    Article  PubMed  CAS  Google Scholar 

  34. Kuloglu M, Atmaca M, Tezcan E, Gecici O, Tunckol H, Ustundag B (2002) Antioxidant enzyme activities and malondialdehyde levels in patients with obsessive-compulsive disorder. Neuropsychobiology 46(1):27–32

    Article  PubMed  CAS  Google Scholar 

  35. Gałecki P, Szemraj J, Bieńkiewicz M, Zboralski K, Gałecka E (2009) Oxidative stress parameters after combined fluoxetine and acetylsalicylic acid therapy in depressive patients. Hum Psychopharmacol 24(4):277–286

    Article  PubMed  Google Scholar 

  36. Mutlu-Türkoğlu U, Ilhan E, Oztezcan S, Kuru A, Aykaç-Toker G, Uysal M (2003) Age-related increases in plasma malondialdehyde and protein carbonyl levels and lymphocyte DNA damage in elderly subjects. Clin Biochem 36(5):397–400

    Article  PubMed  Google Scholar 

  37. Bartosz G (2010) Non-enzymatic antioxidant capacity assays: limitations of use in biomedicine. Free Radic Res 44(7):711–720

    Article  PubMed  CAS  Google Scholar 

  38. Delibas N, Ozcankaya R, Altuntas I (2002) Clinical importance of erythrocyte malondialdehyde levels as a marker for cognitive deterioration in patients with dementia of Alzheimer type: a repeated study in 5-year interval. Clin Biochem 35(2):137–141

    Article  PubMed  CAS  Google Scholar 

  39. Kotan VO, Sarandol E, Kirhan E, Ozkaya G, Kirli S (2011) Effects of long-term antidepressant treatment on oxidative status in major depressive disorder: a 24-week follow-up study. Prog Neuropsychopharmacol Biol Psychiatry Apr 15 [Epub ahead of print]

  40. Arai H, Takechi H, Wada T, Ishine M, Wakatsuki Y, Horiuchi H, Murayama T, Yokode M, Tanaka M, Kita T, Matsubayashi K, Kume N (2006) Usefulness of measuring serum markers in addition to comprehensive geriatric assessment for cognitive impairment and depressive mood in the elderly. Geriatr Gerontol Int 6(1):7–14

    Article  Google Scholar 

  41. Gao X, Lai C, Scott T, Shen J, Cai T, Ordovas JM, Tucker KL (2010) Urinary 8-hydroxy-2-deoxyguanosine and cognitive function in Puerto Rican adults. Am J Epidemiol 172(3):271–278

    Article  PubMed  Google Scholar 

  42. Torres LL, Quaglio NB, de Souza GT, Garcia RT, Dati LM, Moreira WL, de Melo Loureiro AP, de Souza-Talarico JN, Smid J, Porto CS, de Campos Bottino CM, Nitrini R, de Moraes Barros SB, Camarini R, Marcourakis T (2011) Peripheral oxidative stress biomarkers in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis May 13 [Epub ahead of print]

  43. Padurariu M, Ciobica A, Hritcu L, Stoica B, Bild W, Stefanescu C (2010) Changes of some oxidative stress markers in the serum of patients with mild cognitive impairment and Alzheimer’s disease. Neurosci Lett 469(1):6–10

    Article  PubMed  CAS  Google Scholar 

  44. Ambali SF, Idris SB, Onukak C, Shittu M, Ayo JO (2010) Ameliorative effects of vitamin C on short-term sensorimotor and cognitive changes induced by acute chlorpyrifos exposure in Wistar rats. Toxicol Ind Health 26(9):547–558

    Article  PubMed  CAS  Google Scholar 

  45. Umur EE, Oktenli C, Celik S, Tangi F, Sayan O, Sanisoglu YS, Ipcioglu O, Terekeci HM, Top C, Nalbant S, Kucukardali Y (2011) Increased iron and oxidative stress are separately related to cognitive decline in elderly. Geriatr Gerontol Int. doi:10.1111/j.1447-0594.2011.00694.x

  46. Konarski JZ, McIntyre RS, Kennedy SH, Rafi-Tari S, Soczynska JK, Ketter TA (2008) Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disord 10:1–37

    Article  PubMed  Google Scholar 

  47. Fuchs E, Flügge G (2002) Social stress in tree shrews: effect on physiology, brain function and behavior of subordinate individuals. Pharmacol Biochem Behav 73:247–258

    Article  PubMed  CAS  Google Scholar 

  48. Cai XH, Zhou YH, Zhang CX, Hu LG, Fan XF, Li CC, Zheng GQ, Gong YS (2010) Chronic intermittent hypoxia exposure induces memory impairment in growing rats. Acta Neurobiol Exp (Wars) 70(3):279–287

    Google Scholar 

  49. Ravindra PS, Shashwat S, Suman K (2004) Free radicals and oxidative stress in neurodegenerative diseases: relevance of dietary antioxidants. JIACM 5:218–225

    Google Scholar 

  50. Sarandol A, Sarandol E, Eker SS, Erdinc S, Vatansever E, Kirli S (2007) Major depressive disorder is accompanied with oxidative stress: short-term antidepressant treatment does not alter oxidative-antioxidative systems. Hum Psychopharmacol 22(2):67–73

    Article  PubMed  CAS  Google Scholar 

  51. Gałecki P, Szemraj J, Bieńkiewicz M, Florkowski A, Gałecka E (2009) Lipid peroxidation and antioxidant protection in patients during acute depressive episodes and in remission after fluoxetine treatment. Pharmacol Rep 61(3):436–444

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Talarowska.

Additional information

Monika Talarowska and Piotr Gałecki contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talarowska, M., Gałecki, P., Maes, M. et al. Malondialdehyde plasma concentration correlates with declarative and working memory in patients with recurrent depressive disorder. Mol Biol Rep 39, 5359–5366 (2012). https://doi.org/10.1007/s11033-011-1335-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1335-8

Keywords

Navigation