Skip to main content
Log in

PDIA3 mRNA expression and IL-2, IL-4, IL-6, and CRP levels of acute kidney allograft rejection in rat

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Kidney transplantation to treat end-stage renal disease has evolved rapidly from the first successful transplantations to the current widespread use of grafts from both cadaveric and living donors. But acute rejection is still a strong risk factor for chronic rejection in recipients of renal grafts. To investigate possible mechanisms, we describe a comparison between differentially proteins expression and immune markers profile (IL-2, IL-4, IL-6, and CRP) of acute rejection and the controls. Through quantitative real-time RT-PCR confirmation, PDIA3 mRNA and protein expression levels in serum and transplanted kidney in experiment group was significantly (P < 0.05) higher than that in control group. Immunity analysis showed that plasma IL-2, IL-4, IL-6, and CRP levels were higher in experimental rats than those in control rats. Our data thus indicate that PDIA3 might be potentially involve into the occurence and development of acute rejection response in renal transplantation and increased plasma IL-2, IL-4, IL-6, and CRP levels play an important role to prevent acute kidney allograft rejection in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IL-2:

Interleukin-2

IL-4:

Interleukin-4

IL-6:

Interleukin-6

CRP:

C-reactive protein

References

  1. United Network for Organ Sharing (1994) The UNOS statement of principles and objectives of equitable organ allocation. UNOS update 10:20

    Google Scholar 

  2. Evans RW, Manninen DL, Garrison LPJ, Hart LG, Blagg CR, Gutman RA, Hull AR, Lowrie EG (1985) The quality of life of patients with end-stage renal disease. N Engl J Med 312:553

    Article  PubMed  CAS  Google Scholar 

  3. Maattanen P, Kozlov G, Gehring K, Thomas DY (2006) ERp57 and PDI: multifunctional protein disulfide isomerase with similar domain architectures but differing substrate-partner associations. Biochem Cell Biol 84:881–889

    Article  PubMed  CAS  Google Scholar 

  4. Flores-Diaz M, Higuita JC, Florin I, Okada T, Pollesello P, Bergman T, Thelestam M, Mori K, Alape-Giron A (2004) A cellular UDP-glucose deficiency causes overexpression of glucose/oxygen-regulated proteins independent of the endoplasmic reticulum stress elements. J Biol Chem 279:21724–21731

    Article  PubMed  CAS  Google Scholar 

  5. Grillo C, D’Ambrosio C, Scaloni A, Maceroni M, Merluzzi S, Turano C, Altieri F (2006) Cooperative activity of Ref-1/APE and ERp57 in reductive activation of transcription factors. Free Radic Biol Med 41:1113–1123

    Article  PubMed  CAS  Google Scholar 

  6. Chichiarelli S, Ferraro A, Altieri F, Eufemi M, Coppari S, Grillo C, Arcangeli V, Turano C (2007) The stress protein ERp57/GRP58 binds specific DNA sequences in HeLa cells. J Cell Physiol 210:343–351

    Article  PubMed  CAS  Google Scholar 

  7. Manchanda PK, Bid HK, Kumar A, Mittal RD (2006) Genetic association of interleukin-1β and receptor antagonist (IL-1Ra) gene polymorphism with allograft function in renal transplant patients. Transpl Immunol 15:289–296

    Article  PubMed  CAS  Google Scholar 

  8. Gibbs PJ, Tan LC, Sadek SA, Howell WM (2005) Quantitative detection of changes in cytokine gene expression in peripheral blood mononuclear cells correlates with and precedes acute rejection in renal transplant recipients. Transpl Immunol 14:99–108

    Article  PubMed  CAS  Google Scholar 

  9. Kato H, Ritter T, Ke B, Murakami M, Kusano M, Busuttil RW, Kupiec-Weglinski JW (2000) Adenovirus-mediated gene transfer of IL-4 prolongs rat renal allograft survival and inhibits the p21(ras)-activation pathway. Transpl Proc 32:245–246

    Article  CAS  Google Scholar 

  10. Kwon O, Molitoris BA, Pescovitz M, Kelly KJ (2003) Urinary actin, interleukin-6, and interleukin-8 may predict sustained arf after ischemic injury in renal allografts. Am J Kidney Dis 41:1074–1087

    Article  PubMed  CAS  Google Scholar 

  11. Kato N, Abe S, Suto M, Hiraiwa K (2009) Comparison of renal dysfunction in wild-type, IL-6 KO and iNOS KO mice hind limb tourniquet–reperfusion model. Leg Med 11:S248–S251

    Article  Google Scholar 

  12. Neto JS, Nakao A, Toyokawa H, Nalesnik MA, Romanosky AJ, Kimizuka K, Kaizu T, Hashimoto N, Azhipa O, Stolz DB, Choi AM, Murase N (2006) Low-dose carbon monoxide inhalation prevents development of chronic allograft nephropathy. Am J Physiol Renal Physiol 290:F324–F334

    Article  PubMed  Google Scholar 

  13. Nakao A, Faleo G, Nalesnik MA, Seda-Neto J, Kohmoto J, Murase N (2009) Low dose carbon monoxide inhibits progressive chronic allograft nephropathy and restores renal allograft function. Am J Physiol Renal Physiol 297:F19–F26

    Article  PubMed  CAS  Google Scholar 

  14. Pagliuso RG, Goloni-Bertolo EM, Filho MA, Pavarino-Bertelli EC (2006) Estresse oxidativo e disfunção crônica do enxerto renal. Arq Ciênc Saúde 13(2):223–227

    Google Scholar 

  15. Wilkinson B, Gilbert HF (2004) Protein disulfide isomerase. Biochim Biophys Acta 1699:35–44

    PubMed  CAS  Google Scholar 

  16. Noiva R (1999) Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum. Semin Cell Dev Biol 10:481–493

    Article  PubMed  CAS  Google Scholar 

  17. Frand AR, Cuozzo JW, Kaiser CA (2000) Pathways for protein disulphide bond formation. Trends Cell Biol 10:203–210

    Article  PubMed  CAS  Google Scholar 

  18. Freedman RB, Hirst TR, Tuite MF (1994) Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci 19:331–336

    Article  PubMed  CAS  Google Scholar 

  19. Chichiarelli S, Ferraro A, Altieri F, Eufemi M, Coppari S, Grillo C, Arcangeli V, Turano C (2007) The stress protein ERp57/GRP58 binds specific DNA sequences in HeLa cells. J Cell Physiol 210:343–351

    Article  PubMed  CAS  Google Scholar 

  20. Ng Y-H, Chalasani G (2010) Role of secondary lymphoid tissues in primary and memory T-cell responses to a transplanted organ. Transpl Rev 24:32–41

    Article  Google Scholar 

  21. Goldstein DR, Palmer SM (2005) Role of toll-like receptor-driven innate immunity in thoracic organ transplantation. J Heart Lung Transpl 24:1721–1729

    Article  Google Scholar 

  22. Fonseca-Aten M, Michaels MG (2006) Semin Pediatr Surg 15:153–161

    Article  PubMed  Google Scholar 

  23. Karczewski J, Karczewski M, Glyda M, Wiktorowicz K (2008) Role of TH1/TH2 cytokines in kidney allograft rejection. Transpl Proc 40(15):3390–3392

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work is supported by science fund from health bureau of Chongqing city (2010-2-042): effect of loss of balance of Th17/Treg cell subgroup on renal transplantation acute reject reaction and science fund from Chongqing Medical University (XBYB2008001): study of proteomics in rat allograft renal transplantation reject reaction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhao Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Mi, J., Xiao, M.Z. et al. PDIA3 mRNA expression and IL-2, IL-4, IL-6, and CRP levels of acute kidney allograft rejection in rat. Mol Biol Rep 39, 5233–5238 (2012). https://doi.org/10.1007/s11033-011-1321-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1321-1

Keywords

Navigation