Skip to main content
Log in

Application of 16s rDNA and cytochrome b ribosomal markers in studies of lineage and fish populations structure of aquatic species

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The most economically important form of aquaculture is fish farming, which is an industry that accounts for an ever increasing share of world fishery production. Molecular markers can be used to enhance the productivity of the aquaculture and fish industries to meet the increasing demand. Molecular markers can be identified via a DNA test regardless of the developmental stage, age or environmental challenges experienced by the organism. The application of 16s and cytochrome b markers has enabled rapid progress in investigations of genetic variability and inbreeding, parentage assignments, species and strain identification and the construction of high resolution genetic linkage maps for aquaculture fisheries. In this review, the advantages of principles and potential power tools of 16s and cytochrome b markers are discussed. Main findings in term of trend, aspects and debates on the reviewed issue made from the model of aquatic species for the benefit of aquaculture genomics and aquaculture genetics research are discussed. The concepts in this review are illustrated with various research examples and results that relate theory to reality and provide a strong review of the current status of these biotechnology topics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Condon C (2009) RNA processing. In: Moselio S (ed) Encyclopedia of microbiology, 3rd edn. Elsevier, Oxford, vol 5, pp 395–408

  2. Stern S, Ted P, Li MC, Harry FN (1988) Interaction of ribosomal proteins S5, S6, S11, S12, S18 and S21 with 16 S rRNA. J Mol Biol 201(4):683–695

    Article  PubMed  CAS  Google Scholar 

  3. Horz HP, Sebastian S, Morgana EV, George C (2010) New methods for selective isolation of bacterial DNA from human clinical specimens. Anaerobe 16(1):47–53

    Google Scholar 

  4. Pérez-Losada M, Maigualida R, Jonathon CM, Jorge D (2009) Phylogenetic assessment of the earthworm Aporrectodea caliginosa species complex (Oligochaeta: Lumbricidae) based on mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 52(2):293–302

    Article  PubMed  Google Scholar 

  5. Sharma P, Giribet G (2009) Sandokanid phylogeny based on eight molecular markers—the evolution of a southeast Asian endemic family of Laniatores (Arachnida, Opiliones). Mol Phylogenet Evol 52(2):432–447

    Article  PubMed  CAS  Google Scholar 

  6. Akimoto M, Niikura M, Ichikawa M, Yonekawa H, Nakada K, Honma Y, Hayashi JI (2005) Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells. Biochem Biophys Res Commun 327(4):1028–1035

    Article  PubMed  CAS  Google Scholar 

  7. Czyżowski P, Mirosław K, Leszek D (2008) Molecular investigation of phylogenetic relationships and phylogeography of polish pheasants using the mitochondrial cytochrome b gene sequence. Electron J Pol Agric Univ 11:4

    Google Scholar 

  8. Valnot I, Johanna K, Dominique C, Pascale DL, Béatrice P, Arnold M, Jean K, Pierre R, Rötig AA (1999) Mitochondrial cytochrome b mutation but no mutations of nuclearly encoded subunits in ubiquinol cytochrome c reductase (complex III) deficiency. Hum Genet 104(6):460–466

    Article  PubMed  CAS  Google Scholar 

  9. Blakely EL, Mitchell AL, Fisher N, Meunier B, Nijtmans LG, Schaefer AM, Jackson MJ, Turnbull DM, Taylor RW (2005) A mitochondrial cytochrome b mutation causing severe respiratory chain enzyme deficiency. Febs J 272:3583–3592

    Article  PubMed  CAS  Google Scholar 

  10. Maggio T, Andaloro F, Hemida F, Arculeo M (2005) A molecular analysis of some Eastern Atlantic grouper from the Epinephelus and Mycteroperca genus. J Exp Mar Biol Ecol 321:83–92

    Article  CAS  Google Scholar 

  11. Peng Z, Shunping H, Yaoguang Z (2003) Phylogenetic relationships of glyptosternoid fishes (Siluformes: Sisoridae) inferred from mitochondrial cytochrome b gene sequences. Mol Phylogenet Evol 31:979–987

    Article  Google Scholar 

  12. Kyriazi P, Poulakakis N, Parmakelis A, Crochet PA, Moravec J, Rastegar-Pouyani N, Tsigenopoulos CS, Magoulas A, Mylonas M, Lymberakis P (2008) Mitochondrial DNA reveals the genealogical history of the snake-eyed lizards (Ophisops elegans and O. occidentalis) (Sauria: Lacertidae). Mol Phylogenet Evol 49(3):795–805

    Article  PubMed  CAS  Google Scholar 

  13. Ilves KL, Taylor EB (2009) Molecular resolution of the systematic of a problematic group of fishes (Teleostei: Osmeridae) and evidence for morphological homoplasy. Mol Phylogenet Evol 50:163–178

    Article  PubMed  CAS  Google Scholar 

  14. Nguyen TTT, Uthairat NN, Srijanya S, Chen ZM (2008) A study on phylogeny and biogeography of mahseer species (Pisces: Cyprinidae) using sequences of three mitochondrial DNA gene regions. Mol Phylogenet Evol 48:1223–1231

    Article  PubMed  CAS  Google Scholar 

  15. Betancur-R R, Acero PA, Eldregde B, Richard C (2007) Systematics and biogeography of New World sea catfishes (Siluriformes: Ariidae) as inferred from mitochondrial, nuclear, and morphological evidence. Mol Phylogenet Evol 45:339–357

    Article  PubMed  CAS  Google Scholar 

  16. Smith LL, Fessler JL, Alfaro ME, Todd SJ, Westneat MW (2008) Phylogenetic relationships and the evolution of regulatory gene sequences in the parrotfishes. Mol Phylogenet Evol 49:136–152

    Article  PubMed  CAS  Google Scholar 

  17. Livi S, Sola L, Crosetti D (2011) Phylogeographic relationships among worldwide populations of the cosmopolitan marine species, the striped gray mullet (Mugil cephalus), investigated by partial cytochrome b gene sequences. Biochem Syst Ecol 39(2):121–131

    Article  CAS  Google Scholar 

  18. Tang KL, Agnew MK, Chen W-J, Hirt MV, Raley ME, Sado T, Schneider LM, Yang L, Bart HL, He S, Liu H, Miya M, Saitoh K, Simons AM, Wood RM, Mayden RL (2011) Phylogeny of the gudgeons (Teleostei: Cyprinidae: Gobioninae) Mol Phylogenet Evol 61:103–124

    Google Scholar 

  19. Knudsen SW, Moller PR, Gravlund P (2007) Phylogeny of the snailfishes (Teleostei: Liparidae) based on molecular and morphological data. Mol Phylogenet Evol 44:649–666

    Article  PubMed  CAS  Google Scholar 

  20. Kullander SO (1998) A phylogeny and classification of the South American Cichlidae (Teleostei: Perciformes). In: Malabarba LR, Reis RE, Vari RP, Lucena ZM, Lucena CAS (eds) Phylogeny and classification of neotropical fishes. Edipucrs, Porto Alegre, pp 461–498

  21. Musilova Z, Oldrich R, Karel J, Jindrich N (2007) Molecular phylogeny and biogeography of the Neotropical cichlid fish tribe Cichlasomatini (Teleostei: Cichlidae: Cichlasomatinae). Mol Phylogenet Evol 46:659–672

    Article  PubMed  Google Scholar 

  22. Neilson ME, Stepien CA (2009) Escape from the Ponto-Caspian: evolution and biogeography of an endemic goby species flock (Benthophilinae: Gobiidae: Teleostei). Mol Phylogenet Evol 52:84–102

    Article  PubMed  CAS  Google Scholar 

  23. Vergara-Chen C, Aguirre WE, González-Wangüemert M, Bermingham E (2009) A mitochondrial DNA based phylogeny of weakfish species of the Cynoscion group (Pisces: Sciaenidae). Mol Phylogenet Evol 53:602–607

    Article  PubMed  CAS  Google Scholar 

  24. Kochzius M, Rainer S, Maarof AK, Dietmar B (2003) Molecular phylogeny of the lionfish genera Dendrochirus and Pterois (Scorpaenidae, Pteroinae) based on mitochondrial DNA sequences. Mol Phylogenet Evol 28:396–403

    Article  PubMed  CAS  Google Scholar 

  25. Betancur RR (2010) Molecular phylogenetics supports multiple evolutionary transitions from marine to freshwater habitats in ariid catfishes. Mol Phylogenet Evol 55:249–258

    Article  Google Scholar 

  26. Chen D, Guo X, Nie P (2010) Phylogenetic studies of sinipercid fish (Perciformes: Sinipercidae) based on multiple genes, with first application of an immune-related gene, the virus-induced protein (viperin) gene. Mol Phylogenet Evol 55:1167–1176

    Article  PubMed  Google Scholar 

  27. Trotta M, Susana SN, Tiziana P (2005) Multiplex PCR method for use in real-time PCR for identification of fish fillets from grouper (Epinephelus and Mycteroperca species) and common substitute species. J Agric Food Chem 53:2039–2045

    Article  PubMed  CAS  Google Scholar 

  28. Baharum SN, Nurdalila AA (2011) Phylogenetic relationships of Epinephelus fuscoguttatus and Epinephelus hexagonatus inferred from mitochondrial cytochrome b gene sequences using bioinformatic tools. Int J Biosci Biochem Bioinform 1(1):47–52

    Google Scholar 

  29. Doadrio I, Silvia P, Lourdes A, Natividad H (2009) Molecular phylogeny and biogeography of the Cuban genus Girardinus Poey, 1854 and relationships within the tribe Girardinini (Actinopterygii, Poeciliidae). Mol Phylogenet Evol 50:16–31

    Article  PubMed  CAS  Google Scholar 

  30. Craig MT, Pondella DJ, Franck JPC, Hafner JC (2001) On the status of the Serranid fish genus Epinephelus: evidence for paraphyly based upon 16S rDNA sequence. Mol Phylogenet Evol 19(1):121–130

    Article  PubMed  CAS  Google Scholar 

  31. Chen CH (2008) Identification of species in fish processed products by analysis of mitochondrial DNA based on PCR and coupled with other techniques. Department of Food Science, National Taiwan Ocean University, p 3

  32. Liu ZJ, Cordes JF (2004) Erratum to DNA marker technologies and their applications in aquaculture genetics. Aquaculture 242(1–4):735–736

    Article  Google Scholar 

  33. Hofstetter V, Miadlikowska J, Kauff F, Lutzoni F (2007) Phylogenetic comparison of protein-coding versus ribosomal RNA-coding sequence data: a case study of the Lecanoromycetes (Ascomycota). Mol Phylogenet Evol 44:412–426

    Article  PubMed  CAS  Google Scholar 

  34. Zeinalabedini M, Majourhat K, Khayam-Nekoui M, Grigorian V, Torchi M, Dicenta F, Martínez-Gómez P (2008) Comparison of the use of morphological, protein and DNA markers in the genetic characterization of Iranian wild Prunus species. Sci Hortic 116:80–88

    Article  CAS  Google Scholar 

  35. Heyden SVD, Matthee CA (2008) Towards resolving familial relationships within the Gadiformes, and the resurrection of the Lyconidae. Mol Phylogenet Evol 48:764–769

    Article  PubMed  Google Scholar 

  36. He S, Xun G, Richard L, Mayden WJC, Kevin WC, Yiyu C (2007) Phylogenetic position of the enigmatic genus Psilorhynchus (Ostariophysi: Cypriniformes): evidence from the mitochondrial genome. Mol Phylogenet Evol 47:419–425

    Article  PubMed  Google Scholar 

  37. Bernardi G, Yvette RA, Joao LG, Sergio RF (2008) Molecular ecology, speciation, and evolution of the reef fish genus Anisotremus. Mol Phylogenet Evol 48:929–935

    Article  PubMed  CAS  Google Scholar 

  38. Rocha LA, Lindeman KC, Rocha CR, Lessios HA (2008) Historical biogeography and speciation in the reef fish genus Haemulon (Teleostei: Haemulidae). Mol Phylogenet Evol 48:918–928

    Article  PubMed  CAS  Google Scholar 

  39. Perdices A, Jorg B, Ignacio D (2008) The molecular diversity of Adriatic spined loaches (Teleostei, Cobitidae). Mol Phylogenet Evol 46:382–390

    Article  PubMed  CAS  Google Scholar 

  40. Kuriiwa K, Naoto H, Tetsuo Y, Seishi K, Mutsumi N (2007) Phylogenetic relationships and natural hybridization in rabbitfishes (Teleostei: Siganidae) inferred from mitochondrial and nuclear DNA analyses. Mol Phylogenet Evol 45:69–80

    Article  PubMed  CAS  Google Scholar 

  41. Ramon ML, Knope ML (2008) Molecular support for marine sculpin (Cottidae; Oligocottinae) diversification during the transition from the subtidal to intertidal habitat in the Northeastern Pacific Ocean. Mol Phylogenet Evol 46:475–483

    Article  PubMed  CAS  Google Scholar 

  42. Robalo JI, Doadrio I, Valente A, Almada VC (2008) Insight on speciation patterns in the genus Iberochondrostoma (Cyprinidae): evidence from mitochondrial and nuclear data. Mol Phylogenet Evol 46:155–166

    Article  PubMed  CAS  Google Scholar 

  43. Slechtova V, Jorge B, Perdices A (2008) Molecular phylogeny of the freshwater fish family Cobitidae (Cypriniformes: Teleostei): delimination of genera, mitochondrial introgression and evolution of sexual dimorphism. Mol Phylogenet Evol 47:812–831

    Article  PubMed  CAS  Google Scholar 

  44. Keck BP, Near TJ (2008) Assessing phylogenetic resolution among mitochondrial, nuclear, and morphological datasets in Nothonotus darters (Teleostei: Percidae). Mol Phylogenet Evol 46:708–720

    Article  PubMed  CAS  Google Scholar 

  45. Galbo AM, Carpenter KE, Reed DL (2002) Evolution of trophic types in Emperor fishes (Lethrinus, Lethrinidae, Percoidei) based on cytochrome b gene sequence variation. J Mol Evol 54:754–762

    Article  PubMed  Google Scholar 

  46. Li J, Xuzhen W, Xianghui K, Kai Z, Shunping H, Richard LM (2008) Variation patterns of the mitochondrial 16s rRNA gene with secondary structure constraints and their application to phylogeny of cypirinine fishes (Teleostei: Cypriniformes). Mol Phylogenet Evol 47:472–487

    Article  PubMed  CAS  Google Scholar 

  47. Near TJ, Cheng CCH (2008) Phylogenetics of notothenioid fishes (Teleostei: Acanthomorpha): inferences from mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 47:832–840

    Article  PubMed  CAS  Google Scholar 

  48. Covain R, Stephane D, Sonia FM, Juan IMB (2008) Assessing phylogenetic dependence of morphological traits using co-inertia prior to investigate character evolution in Loricariinae catfishes. Mol Phylogenet Evol 46:986–1002

    Article  PubMed  Google Scholar 

  49. Smith WL, Wheeler WC (2004) Polyphyly of the mail-cheeked fishes (Teleostei: Scorpaeniformes): evidence from mitochondrial and nuclear sequence data. Mol Phylogenet Evol 32:627–646

    Article  PubMed  CAS  Google Scholar 

  50. Fessler JL, Westneat MW (2007) Molecular phylogenetics of the butterflyfishes (Chaetodontidae): taxonomy and biogeography of a global coral reef fish family. Mol Phylogenet Evol 45:50–68

    Article  PubMed  CAS  Google Scholar 

  51. Moller PR, Gravlund P (2003) Phylogeny of the eelpout genus Lycodes (Pisces, Zoarcidae) as inferred from mitochondrial cytochrome b and 12s rDNA. Mol Phylogenet Evol 26:369–388

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by research grant number 07-05-ABI-AB005 from the Ministry of Science, Technology and Innovation (MOSTI) Malaysia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syarul Nataqain Baharum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baharum, S.N., Nurdalila, A.A. Application of 16s rDNA and cytochrome b ribosomal markers in studies of lineage and fish populations structure of aquatic species. Mol Biol Rep 39, 5225–5232 (2012). https://doi.org/10.1007/s11033-011-1320-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1320-2

Keywords

Navigation