Skip to main content

Advertisement

Log in

Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

To isolate antimicrobial-related genes from the beet armyworm, Spodoptera exigua, we performed GeneFishing, a polymerase chain reaction (PCR)-based differential display technique. An attacin-like complementary DNA (cDNA) including a 3′-untranslated region was identified from among 18 over-expressed genes in microbial-infected larvae. The full-length attacin cDNA from S. exigua cDNA (Seattacin) was cloned using rapid amplification of cDNA ends PCR. The attacin-like cDNA transcript was 765 nucleotides in length, and the predicted polypeptide was 254 amino acids in length with a calculated molecular mass of 27.6 kDa and an isoelectric point of 6.44. The protein sequence of the attacin-like cDNA showed high identity to that of Trichoplusia ni (61.2%). The amino acid sequence identity of Seattacin to the orthologous proteins in Bombyx mori, Manduca sexta, Heliothis virescens, Hlicoverpa armigera, Hyphantria cunea, Hyalophora cecropia, and Drosophila melanogaster was 61.2, 46.1, 44.5, 42.2, 39.5, 45.1, and 24.0%, respectively. To examine possible immune functions of the attacin-like cDNA, its expression was investigated by reverse transcriptase PCR analysis after challenging S. exigua with microorganisms. The attacin-like cDNA was expressed at high levels 12 h post-infection, and its expression was slightly induced 4–8 h post-infection compared to control larvae inoculated with sterile water. Furthermore, induced Seattacin showed biological activity against several bacteria including Escherichia coli DH5α, Pseudomonas cichorii, Bacillus subtilis, and Listeria monocytogenes. These results suggest that the attacin-like cDNA of S. exigua codes for antimicrobial peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Imler JK, Bulet P (2005) Antimicrobial peptides and activation of immune responses in Drosophila: structures, activities and gene regulation. Chem Immunol Allergy 86:1–21

    Article  PubMed  CAS  Google Scholar 

  2. Kocks C, Cho JH, Nehme N, Ulvila J, Pearson AM, Meister M, Strom C, Conto SL, Hetru C, Stuart LM, Stehle T, Hoffmann JA, Reichhart JM, Ferrandon D, Rämet M, Ezekowitz RA (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123:11–22

    Article  Google Scholar 

  3. Kurata S, Ariki S, Kawabata S (2006) Recognition of pathogens and activation of immune responses in Drosophila and horseshoe crab innate immunity. Immunobiology 211:237–249

    Article  PubMed  CAS  Google Scholar 

  4. Bulet P, Stocklin R, Menin L (2004) Anti-microbial peptides: from invertebrates to vertebrates. Immunol Rev 198:169–184

    Article  PubMed  CAS  Google Scholar 

  5. De Gregorio E, Spellman PT, Rubin GM, Lemaitre B (2001) Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc Natl Acad Sci USA 98:12590–12595

    Article  PubMed  Google Scholar 

  6. Zou Z, Evans JD, Lu Z, Zhao P, Williams M, Sumathipala N, Hetru C, Hultmark D, Jiang H (2007) Comparative genomic analysis of the Tribolium immune system. Genome Biol 8:R177

    Article  PubMed  Google Scholar 

  7. Tanaka H, Ishibashi J, Fujita K, Nakajima Y, Sagisaka A, Tomimoto K, Suzuki N, Yoshiyama M, Kaneko Y, Iwasaki T, Sunagawa T, Yamaji K, Asaoka A, Mita K, Yamakawa M (2008) A genome-wide analysis of genes and gene families involved in innate immunity of Bombyx mori. Insect Biochem Mol Biol 38:1087–1110

    Article  PubMed  CAS  Google Scholar 

  8. Carlsson A, Engström P, Palva ET, Bennich H (1991) Attacin, an antibacterial protein from Hyalophora cecropia, inhibits synthesis of outer membrane proteins in Escherichia coli by interfering with omp gene transcription. Infect Immunol 59:3040–3045

    CAS  Google Scholar 

  9. Ando K, Okada M, Natori S (1987) Purification of sarcotoxin II, antibacterial proteins of Sarcophaga peregrina (flesh fly) larvae. Biochemistry 26:226–230

    Article  PubMed  CAS  Google Scholar 

  10. Matsuyama K, Natori S (1988) Purification of three antibacterial proteins from the culture medium of NIH-Sape-4, an embryonic cell line of Sarcophaga peregrina. J Biol Chem 263:17112–17116

    PubMed  CAS  Google Scholar 

  11. Wang L, Yu B, Han G, Chen D (2010) Molecular cloning, expression in Escherichia coli of Attacin A gene from Drosophila and detection of biological activity. Mol Biol Rep 37:2463–2469

    Article  PubMed  CAS  Google Scholar 

  12. Dushay MS, Roethele JB, Chaverri JM, Dulek DE, Syed SK, Kitami T, Eldon ED (2000) Two Attacin antibacterial genes of Drosophila melanogaster. Gene 246:49–57

    Article  PubMed  CAS  Google Scholar 

  13. Lazzaro BP, Clark AG (2001) Evidence for recurrent paralogous gene conversion and exceptional allelic divergence in the Attacin genes of Drosophila melanogaster. Genetics 159:659–671

    PubMed  CAS  Google Scholar 

  14. Geng H, An CJ, Hao YJ, Li DS, Du RQ (2004) Molecular cloning and expression of Attacin from housefly (Musca domestica). Acta Genet Sin 31:1344–1350

    PubMed  CAS  Google Scholar 

  15. Kang DW, Lundström A, Steiner H (1996) Trichoplusia ni attacin A, a differentially displayed insect coding for an antibacterial protein. Gene 174:245–249

    Article  PubMed  CAS  Google Scholar 

  16. Kishimoto K, Fujimoto S, Matsumoto K, Yamano Y, Morishima I (2002) Protein purification, cDNA cloning and gene expression of attacin, an antibacterial protein, from eri-silkworm, Samia cynthia ricini. Insect Biochem Mol Biol 32:881–887

    Article  PubMed  CAS  Google Scholar 

  17. Sugiyama M, Kuniyoshi H, Kotani E, Taniai K, Kadono-Okuda K, Kato Y, Yamamoto M, Shimabukuro M, Chowdhury S, Xu J, Choi SK, Kataoka H, Suzuki A, Yamakawa M (1995) Characterization of a Bombyx mori cDNA encoding a novel member of the Attacin family of insect antibacterial proteins. Insect Biochem Mol Biol 25:385–392

    Article  PubMed  CAS  Google Scholar 

  18. Zhang B, Wang LM, Ye B, Li SY, Zhao ZJ, Fan Q (2006) Cloning and analysis of cDNA of the Attacin gene from the Chinese oak silkworm, Antheraea pernyi, using RLM-RACE method. Canye Kexue 32:333–339

    CAS  Google Scholar 

  19. Capinera JL (2001) Handbook of vegetable pests. Academic Press, San Diego, pp 729–738

    Google Scholar 

  20. Wang Q, Liu Y, He H, Zhao X, Wang J (2010) Immune response of Helicoverpa armigera to different kinds of pathogens. BMC Immunol 11:9

    Article  PubMed  Google Scholar 

  21. Hancock REW, Brown KL, Mookherjee N (2006) Host defense peptides from invertebrates—emerging antimicrobial strategies. Immunobiology 211:315–322

    Article  PubMed  CAS  Google Scholar 

  22. Raulston JR, Lingren PD (1972) Methods for large-scale rearing of the tobacco budworm. United States Department of Agriculture Product Research Report, vol 145, pp 1–10

  23. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  24. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    Article  PubMed  CAS  Google Scholar 

  25. Steinberg DA, Lehrer RI (1997) Designer assays for antimicrobial peptides. Disputing the “one-size-fits-all” theory. Methods Mol Biol 78:169–186

    PubMed  CAS  Google Scholar 

  26. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunesekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR, Bateman A (2010) The Pfam protein families database. Nucleic Acids Res 38:D211–D222 (database issue)

    Article  PubMed  CAS  Google Scholar 

  27. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  28. Freitak D, Heckel DG, Vogel H (2009) Bacterial feeding induces changes in immune-related gene expression and has trans-generational impacts in the cabbage looper (Trichoplusia ni). Front Zool 6:7

    Article  PubMed  Google Scholar 

  29. Jin YH, Jung S, Jin SG, Jung TY, Moon KS, Kim IY (2010) GRIM-19 Expression and function in human Gliomas. J Korean Neurosurg Soc 48:20–30

    Article  PubMed  CAS  Google Scholar 

  30. Bryson K, McGuffin LJ, Marsden RL, Ward JJ, Sodhi JS, Jones DT (2005) Protein structure prediction servers at University College London. Nucl Aci Res 33:W36–W38 (Web server issue)

    Article  CAS  Google Scholar 

  31. Jones DT (1999) Protein secondary structure prediction based on position specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  32. Puntervoll P, Linding R, Gemünd C, Chabanis-Davidson S, Mattingsdal M, Cameron S, Martin DMA, Ausiello G, Brannetti B, Costantini A, Ferrè F, Maselli V, Via A, Cesareni G, Diella F, Superti-Furga G, Wyrwicz L, Ramu C, McGuigan C, Gudavalli R, Letunic I, Bork P, Rychlewski L, Küster B, Helmer-Citterich M, Hunter WN, Aasland R, Gibson TJ (2003) ELM server: a new resource for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res 31:3625–3630

    Article  PubMed  CAS  Google Scholar 

  33. Park CB, Yi KS, Matsuzaki K, Kim MS, Kim SC (2000) Structure–activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc Natl Acad Sci USA 97:8245–8250

    Article  PubMed  CAS  Google Scholar 

  34. Ganz T (2003) The role of antimicrobial peptides in innate immunity. Integr Comp Biol 43:300–304

    Article  PubMed  CAS  Google Scholar 

  35. Carlsson A, Nystrom T, Cock H, Bennichl H (1998) Attacin—an insect immune protein-binds LPS and triggers the specific inhibition of bacterial outer-membrane protein synthesis. Microbiology 144:2179–2188

    Article  PubMed  CAS  Google Scholar 

  36. Wikipedia contributors (2011) “Listeria monocytogenes” Wikipedia, the Free Encyclopedia Web, 9 May

  37. Damodharan L, Pattabhi V (2004) Hydropathy analysis to correlate structure and function of proteins. Biochem Biophys Res Commun 323:996–1002

    Article  PubMed  CAS  Google Scholar 

  38. Engstrom A, Engstrom P, Tao Zj, Carlsson A, Bennich H (1984) Insect immunity. The primary structure of the antibacterial protein attacin F and its relation to two native attacins from Hyalophora cecropia. Eur Mol Biol Org J 9:2065–2070

    Google Scholar 

  39. Sun SC, Lindström I, Lee JY, Faye I (1991) Structure and expression of the attacin genes in Hyalophora cecropia. Eur J BioChem 196:247–254

    Article  PubMed  CAS  Google Scholar 

  40. Tanaka H, Furukawa S, Nakazawa H, Sagisaka A, Yamakawa M (2005) Regulation of gene expression of attacin, an antibacterial protein in the silkworm, Bombyx mori. J Insect Biotech Sericol 74:45–56

    CAS  Google Scholar 

  41. Wang L, Yu B, Han G, He J, Chen D (2009) Design expression and characterization of recombinant hybrid peptide Attacin-Thanatin in Escherichia coli. Mol Biol Rep 37:3495–3501

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by National Research Foundation of Korea (Grant Number; 2010-0021231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeyoull Cho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1858 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bang, K., Park, S., Yoo, J.Y. et al. Characterization and expression of attacin, an antibacterial protein-encoding gene, from the beet armyworm, Spodoptera exigua (Hübner) (Insecta: Lepidoptera: Noctuidae). Mol Biol Rep 39, 5151–5159 (2012). https://doi.org/10.1007/s11033-011-1311-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1311-3

Keywords

Navigation