Skip to main content
Log in

Systematic analysis of genomic organization and heterogeneities of miRNA cluster in vertebrates

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The clustering propensity of microRNA genes is a common biological phenomenon in various animal and plant species. To gain novel insight into genomic organization and potential functional heterogeneities of miRNA clusters in vertebrates from a genome scale, we used large scale data and presented a comprehensive analysis to examine various features of genomic organization of miRNA clusters across seven vertebrates by a combination of comparative genomics and bioinformatics approaches. The results of pair-wise distance analysis of same-strand consecutive miRNAs suggested that the fractions of the miRNA gene pairs are higher at relatively short pair-wise distances than those of protein-coding genes and other non-coding RNA genes. Especially relatively small number of miRNAs is more clustered at very short pair-wise distances than expected at random. We further observed significant difference between real miRNA clusters and randomly organized clusters for different aspects, including higher overlap of target genes, fewer seed types and significant enrichment in diseases. However, the extent of these features of clustered miRNAs has a different tendency and largely depends on inter-miRNA distances because of diverse clustering propensity of miRNAs in vertebrates, suggesting that this cooperated function or cooperative effects between miRNAs in clusters perhaps be affected by inter-miRNA distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    Article  PubMed  CAS  Google Scholar 

  2. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233

    Article  PubMed  CAS  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  PubMed  CAS  Google Scholar 

  4. Li L, Xu J, Yang D, Tan X, Wang H (2011) Computational approaches for microRNA studies: a review. Mamm Genome 21(1–2):1–12

    Google Scholar 

  5. Mendes ND, Freitas AT, Sagot MF (2009) Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res 37(8):2419–2433

    Article  PubMed  CAS  Google Scholar 

  6. Wilbert ML, Yeo GW (2011) Genome-wide approaches in the study of microRNA biology. Wiley Interdiscip Rev Syst Biol Med 3. doi:10.1002/wsbm.128

  7. Carrington JC, Ambros V (2003) Role of microRNAs in plant and animal development. Science 301(5631):336–338

    Article  PubMed  CAS  Google Scholar 

  8. Engels BM, Hutvagner G (2006) Principles and effects of microRNA-mediated post-transcriptional gene regulation. Oncogene 25(46):6163–6169

    Article  PubMed  CAS  Google Scholar 

  9. Chi SW, Zang JB, Mele A, Darnell RB (2009) Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature 460(7254):479–486

    PubMed  CAS  Google Scholar 

  10. Zhou M, Wang Q, Sun J, Li X, Xu L, Yang H, Shi H, Ning S, Chen L, Li Y, He T, Zheng Y (2009) In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 94(2):125–131

    Article  PubMed  CAS  Google Scholar 

  11. Yue J, Sheng Y, Orwig KE (2008) Identification of novel homologous microRNA genes in the rhesus macaque genome. BMC Genomics 9:8

    Article  PubMed  Google Scholar 

  12. Lagos-Quintana M, Rauhut R, Meyer J, Borkhardt A, Tuschl T (2003) New microRNAs from mouse and human. RNA 9(2):175–179

    Article  PubMed  CAS  Google Scholar 

  13. Kaczkowski B, Torarinsson E, Reiche K, Havgaard JH, Stadler PF, Gorodkin J (2009) Structural profiles of human miRNA families from pairwise clustering. Bioinformatics 25(3):291–294

    Article  PubMed  CAS  Google Scholar 

  14. He PA, Nie Z, Chen J, Chen J, Lv Z, Sheng Q, Zhou S, Gao X, Kong L, Wu X, Jin Y, Zhang Y (2008) Identification and characteristics of microRNAs from Bombyx mori. BMC Genomics 9:248

    Article  PubMed  Google Scholar 

  15. Baev V, Daskalova E, Minkov I (2009) Computational identification of novel microRNA homologs in the chimpanzee genome. Comput Biol Chem 33(1):62–70

    Article  PubMed  CAS  Google Scholar 

  16. Zhang Y, Zhang R, Su B (2009) Diversity and evolution of MicroRNA gene clusters. Sci China C Life Sci 52(3):261–266

    Article  PubMed  CAS  Google Scholar 

  17. Guo L, Lu Z (2011) Global expression analysis of miRNA gene cluster and family based on isomiRs from deep sequencing data. Comput Biol Chem 34(3):165–171

    Article  Google Scholar 

  18. Chhabra R, Dubey R, Saini N (2010) Cooperative and individualistic functions of the microRNAs in the miR-23a–27a–24-2 cluster and its implication in human diseases. Mol Cancer 9:232

    Article  PubMed  Google Scholar 

  19. Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ (2008) miRBase: tools for microRNA genomics. Nucleic Acids Res 36 (Database issue):D154–D158

    Google Scholar 

  20. Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR, Rhead B, Raney BJ, Pohl A, Pheasant M, Meyer L, Hsu F, Hinrichs AS, Harte RA, Giardine B, Fujita P, Diekhans M, Dreszer T, Clawson H, Barber GP, Haussler D, Kent WJ (2009) The UCSC Genome Browser Database: update 2009. Nucleic Acids Res 37 (Database issue):D755–D761

  21. Ruepp A, Kowarsch A, Schmidl D, Buggenthin F, Brauner B, Dunger I, Fobo G, Frishman G, Montrone C, Theis FJ (2010) PhenomiR: a knowledgebase for microRNA expression in diseases and biological processes. Genome Biol 11(1):R6

    Article  PubMed  Google Scholar 

  22. Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706

    Article  PubMed  CAS  Google Scholar 

  23. Jiang QH, Hao YY, Wang GH, Juan LR, Zhang TJ (2010) Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst Biol 4(Supp l):S2

    Article  PubMed  Google Scholar 

  24. Lee DY, Deng Z, Wang CH, Yang BB (2007) MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 104(51):20350–20355

    Article  PubMed  CAS  Google Scholar 

  25. Lu M, Zhang Q, Deng M, Miao J, Guo Y, Gao W, Cui Q (2008) An analysis of human microRNA and disease associations. PLoS One 3(10):e3420

    Article  PubMed  Google Scholar 

  26. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105

    Article  PubMed  CAS  Google Scholar 

  27. Dehal P, Boore JL (2005) Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3(10):e314

    Article  PubMed  Google Scholar 

  28. Kassahn KS, Dang VT, Wilkins SJ, Perkins AC, Ragan MA (2009) Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res 19(8):1404–1418

    Article  PubMed  CAS  Google Scholar 

  29. Donoghue PC, Purnell MA (2005) Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20(6):312–319

    Article  PubMed  Google Scholar 

  30. Heimberg AM, Sempere LF, Moy VN, Donoghue PC, Peterson KJ (2008) MicroRNAs and the advent of vertebrate morphological complexity. Proc Natl Acad Sci USA 105(8):2946–2950

    Article  PubMed  CAS  Google Scholar 

  31. Hertel J, Lindemeyer M, Missal K, Fried C, Tanzer A, Flamm C, Hofacker IL, Stadler PF (2006) The expansion of the metazoan microRNA repertoire. BMC Genomics 7:25

    Article  PubMed  Google Scholar 

  32. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T (2005) A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res 65(21):9628–9632

    Article  PubMed  CAS  Google Scholar 

  33. Yu J, Wang F, Yang GH, Wang FL, Ma YN, Du ZW, Zhang JW (2006) Human microRNA clusters: genomic organization and expression profile in leukemia cell lines. Biochem Biophys Res Commun 349(1):59–68

    Article  PubMed  CAS  Google Scholar 

  34. Xu J, Wong C (2008) A computational screen for mouse signaling pathways targeted by microRNA clusters. RNA 14(7):1276–1283

    Article  PubMed  CAS  Google Scholar 

  35. Yuan X, Liu C, Yang P, He S, Liao Q, Kang S, Zhao Y (2009) Clustered microRNAs’ coordination in regulating protein–protein interaction network. BMC Syst Biol 3:65

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng Zhou.

Additional information

Jie Sun and Hai-ping Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, J., Liu, Hp., Deng, Je. et al. Systematic analysis of genomic organization and heterogeneities of miRNA cluster in vertebrates. Mol Biol Rep 39, 5143–5149 (2012). https://doi.org/10.1007/s11033-011-1310-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1310-4

Keywords

Navigation