Skip to main content
Log in

Catalase −262C>T polymorphisms in Hungarian vitiligo patients and in controls: further acatalasemia mutations in Hungary

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Catalase is the main regulator of hydrogen peroxide metabolism. In vitiligo patients there are conflicting data on its activity and no data on the effect of −262C>T polymorphism in the catalase gene. Blood catalase activity, −262C>T polymorphism and acatalasemia mutations were examined in 75 vitiligo patients and in 162 controls, in Hungary. We measured blood catalase activity and conducted analyses with PCR-SSCP, polyacrylamide gel electrophoresis and silver staining in combination with RFLP and nucleotide sequencing. Comparison of the wild (CC) genotype and the mutant (TT) genotype in the vitiligo patients revealed a non significant (P > 0.19) increase in blood catalase. Male controls with the CT genotype had significantly (P < 0.04) lower blood catalase activity than CC genotype controls. Female vitiligo patients with CC genotype had lower (P < 0.04) blood catalase than female controls. The frequency of wild genotype (CC) and C alleles is significantly (P < 0.04) decreased in Hungarian controls when compared to controls in Slovenia, Morocco, UK, Greece, Turkey, USA, China. The detection of a novel acatalasemia mutation (37C>T in exon 9) and the 113G>A (exon 9) mutation in Hungary are further proofs of genetic heterogeneity origin of acatalasemia mutations. In conclusion, the −262 C>T polymorphism has a reverse effect on blood catalase in vitiligo patients and in controls. In controls the mutant genotypes and alleles are more frequent in Hungary than in several other populations. The new acatalasemia mutations are further examples of heterogeneity of acatalasemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schallreuter KU, Moore J, Wood JM, Beazley WD, Gaze DC, Tobin DJ, Marshall HS, Panske A, Panzig E, Hibberts NA (1999) In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVB-activated pseudocatalase. J Invest Dermatol Symp Proc 4(1):91–96

    Article  CAS  Google Scholar 

  2. Schallreuter KU, Gibbons NCJ, Zothner C, Abou Elloof MM, Wood JM (2007) Hydrogen peroxide-mediated oxidative stress disrupts calcium bindingon calmodulin: more evidence for oxidative stress in vitiligo. Biochem Biophys Res Com 360:70–75

    Article  PubMed  CAS  Google Scholar 

  3. Schallreuter KU, Rubsam K, Gibbons NCJ, Maitland DJ, Chavan B, Zothner C, Rokos H, Wood JM (2008) Methionine sulfoxide reductases a and b are deactivated by hydrogen peroxide (H2O2) in the epidermis of patients with vitiligo. J Invest Dermatol 128(4):808–815

    Article  PubMed  CAS  Google Scholar 

  4. Schallreuter KU, Elwary S (2007) Hydrogen peroxide regulates the cholinerg signal in a concentration dependent manner. Biochem Biophys Res Com 360(1):70–75

    Article  PubMed  CAS  Google Scholar 

  5. Wood JM, Schallreuter KU (2006) UVA-irradiated pheomelanin alters the structure of catalase and decreases its activity in human skin. J Invest Dermatol 126:13–14

    Article  PubMed  CAS  Google Scholar 

  6. Maresca V, Flori E, Briganti S, Camera E, Cario-Andre’ M, Taieb A, Picardo M (2006) UVA-induced modification of catalase charge properties in the epidermis is correlated with the skin phototype. J Invest Dermatol 126:182–190

    Article  PubMed  CAS  Google Scholar 

  7. Mueller S, Riedel HD, Stremmel W (1997) Direct evidence for catalase as the predominant H2O2-removing enzyme in human erythrocytes. Blood 90:4973–4978

    PubMed  CAS  Google Scholar 

  8. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator or ageing signal? Nat Rev Mol Cell Biol. 8:722–728

    Article  PubMed  CAS  Google Scholar 

  9. Góth L, Eaton WJ (2000) Hereditary catalase deficiencies and increased risk of diabetes. Lancet 356:1820–1821

    Article  PubMed  Google Scholar 

  10. Góth L, Vitai M, Rass P, Sükei E, Páy A (2005) Detection of a novel familial catalase mutation (Hungarian type D) and the possible risk of inherited catalase deficiency for diabetes mellitus. Electrophoresis 26:1646–1649

    Article  PubMed  Google Scholar 

  11. Casp CB, She JX, McCormack WT (2002) Genetic association of catalase gene (CAT) with vitiligo susceptibility. Pigment Cell Res 15:62–66

    Article  PubMed  CAS  Google Scholar 

  12. Gavalas NG, Akhtar S, Gawkrodger DJ, Watson PF, Weetman AP, Kemp EH (2006) Analysis of allelic variants in the catalase gene in patients with the skin depigmentation disorder vitiligo. Biochem Biophys Res Com 345:1586–1591

    Article  PubMed  CAS  Google Scholar 

  13. Park HH, Ha E, Uhm YK, Jin SY, Chung JH, Lee MH (2006) Association study between catalase gene polymorphisms and the susceptibility to vitiligo in Korean population. Exper Dermatol 15:377–380

    Article  CAS  Google Scholar 

  14. Shajil EM, Laddha NC, Chatterjee S, Gani AR, Malek RA, Shah BJ, Begum R (2006) Association of catalase T/C exon 9 and glutathione peroxidase codon 200 polymorphisms in relation to their activities and oxidative stress with vitiligo susceptibility in Gujarat population. Pigment Cell Res 20:405–407

    Google Scholar 

  15. Góth L (2000) Lipid and carbohydrate metabolism in acatalasemia. Clin Chem 46:564–566

    PubMed  Google Scholar 

  16. Góth L, Vitai M (2003) The effects of hydrogen peroxide promoted by homocysteine and inherited catalase deficiency on human hypocatalasemic patients. Free Rad Biol Med 35:882–888

    Article  PubMed  Google Scholar 

  17. Parboosingh JS, Rousseau M, Rogan F, Amit ZH, Chertkow H, Johnson WG, Manganaro F, Schipper HN, Currant TJ, Stoessl J, Rouleau G (1995) Absence of mutations in superoxide dismutase and catalase genes in patients with Parkinson’s disease. Arch Neurol 52:1160–1163

    Article  PubMed  CAS  Google Scholar 

  18. Konings A, Van Laer L, Pawelczyk M, Carlsson PI, Bondeson ML, Rajkowska E, Dudarewicz A, Vandeveldel A, Fransen E, Huyghe J, Borg E, Sliwinska-Kowalska M, Van Camp GS (2007) Association between variations in CAT and noise-induced hearing loss in two independent noise-exposed populations. Hum Mol Genet 16:1872–1883

    Article  PubMed  CAS  Google Scholar 

  19. Oh B, Kim SY, Kim DJ, Lee YJ, Lee JK, Kimm K, Park BL, Shin HD, Kim TH, Park EK, Koh JM, Kim GS (2007) Association of catalase gene polymorphism with bone mineral density and bone turnover markers in postmenopausal women. J Med Genet 44(1):e62

    Article  PubMed  Google Scholar 

  20. Góth L, Bigler NW (2007) Catalase deficiency may complicate urate oxidase (rasburicase) therapy. Free Rad Res 41(9):953–955

    Article  Google Scholar 

  21. Abu-Alfa AK, Younes A (2010) Tumor lysis syndrome and acute kidney injury: evaluation, prevention, and management. Am J Kidney Dis 55(5):S1–S13

    Article  PubMed  Google Scholar 

  22. Hamada Y, Kameyama Y, Iizuka T, Ishizaki T, Nishiyama T, Isshiki A (2004) Methemoglobinemia from hydrogen peroxide in a patient with acatalasemia. Anesthesiology 101(1):247–248

    Article  PubMed  Google Scholar 

  23. Góth L, Rass P, Pay A (2004) Catalase enzyme mutations and their association with diseases. Mol Diagn 8(3):141–149

    Article  PubMed  Google Scholar 

  24. Wally V, Buchroithner B, Klausegger A, Laimer M, Hintner H, Bauer JW (2004) Acatalasemia: identification and characterization of a novel missense mutation. J Invest Dermatol 122:A85–85, 506 (meeting abstract)

    Google Scholar 

  25. Ogata M (2001) Acatalasemia. Hum Genet 86:331–340

    Google Scholar 

  26. Aebi H, Heiniger JP, Bütler R, Hassig A (1961) Two cases of acatalasemia in Switzerland. Experientia 17:466

    Article  PubMed  CAS  Google Scholar 

  27. Góth L (1992) Two cases of acatalasemia in Hungary. Clin Chim Acta 207:155–158

    Article  PubMed  Google Scholar 

  28. Takahara S, Miyamoto H (1948) Three cases of progressive oral gangrene due to lack of catalase in the blood (in Japanese). J Otol Soc Jpn 51:163–164

    Google Scholar 

  29. Schallreuter KU, Wood JM, Berger J (1991) Low catalase levels in the epidermis of patients with vitiligo. J Invest Dermatol 97:1081–1085

    Article  PubMed  CAS  Google Scholar 

  30. Forsberg L, Lyrenas L, de Faire U, Morgenstern R (2001) A common functional C–T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase level. Free Radical Biol Med 30(5):500–505

    Article  CAS  Google Scholar 

  31. Nosikov VV (2004) Genomics of type 1 diabetes mellitus and its late complications. Mol Biol 38(1):128–139

    Article  CAS  Google Scholar 

  32. Zotova EV, Savostyanov KV, Chistyakov DA, Bursa TP, Galeev IV, Strokov IA, Nosikov VV (2004) Association polymorphic markers of the antioxidant enzyme genes with diabetic polyneuropathy in type 1 diabetes mellitus. Mol Biol 38(2):200–204

    Article  CAS  Google Scholar 

  33. Hovnik T, Dolzan V, Bratina NU, Podkrajsek KT, Battelino T (2009) Genetic polymorphisms in a gene encoding antioxidant enzymes are associated with diabetic retinopathy in type 1 diabetes. Diabetes Care 32(12):2258–2262

    Article  PubMed  CAS  Google Scholar 

  34. Chistatiakov DA, Savostanov KV, Turakulov RI (2004) A new type 1 diabetes susceptibility locus containing the catalase gene (chromosome 11p13) in a Russian population. Diabetes Metab Res Rews 20:219–224

    Article  Google Scholar 

  35. Pasak R, Cooper J, Walker NM, Nutland S, Hutching J, Dunger DB, Nejentsev S, Todd JA (2006) No evidence for a major effect of two common polymorphisms of the catalase gene in type 1 diabetes susceptibility. Diab Metab Res Rev 22:356–360

    Article  Google Scholar 

  36. Szelestei T, Bahrung S, Wagner Z, Aydin A, Molnar GA, Kocsis B, Nagy J, Whittman I (2005) Serum levels of arginine analogues and glutathione peroxidase and catalase gene variants in type 2 diabetes mellitus patients. Diabet Med 22:356–357

    Article  PubMed  CAS  Google Scholar 

  37. Goulas A, Fidani L, Kotsis A, Mirtsou V, Petersen RC, Tangalos E, Hardy J (2002) An association study of a functional catalase gene polymorphism, −262C>T, and patients with Alzheimer’s diseases. Neurosci Lett 330:210–212

    Article  PubMed  CAS  Google Scholar 

  38. Ezzikouri S, Feydi AEE, Afifi R, Benazzouz M, Hassar M, Pineau P, Benjelloun S (2010) Polymorphisms in antioxidant defence genes and susceptibility to hepatocellular carcinoma in a Moroccon population. Free Rad Res 44(2):208–210

    Article  CAS  Google Scholar 

  39. Kosmidou M, Hatzitolios A, Molyva D, Raikos N, Savopoulos C, Daferera N, Kokkas V, Goulas A (2009) An association study between catalase −262C>T gene polymorphism, sodium-lithium countertransport activity, insulin resistance, blood lipid parameters and their response to atorvastatin, in Greek dyslipidaemic patients and normolipidaemic controls. Free Rad Res 43(4):385–389

    Article  CAS  Google Scholar 

  40. Wen JK, Osumi T, Hashimoto T (1990) Molecular analysis of human acatalasemia. J Mol Biol 211:383–393

    Article  PubMed  CAS  Google Scholar 

  41. Franko A, Dolizan V, Arneric N, Dodic-Fikfark M (2008) Asbestosis and catalase gene polymorphism. Arhiv zo Higijene Rada I Toksikologiju 59(4):233–240

    Article  CAS  Google Scholar 

  42. Suzen SH, Gucyner E, Sakalli O, Uckum Z, Kose G, Ustel D, Duydu Y (2010) CAT-262T and GPXI Pro198Leu polymorphism in a Turkish population. Mol Biol Rep 37:87–92

    Article  PubMed  CAS  Google Scholar 

  43. Ahn J, Nowel S, McCann SE, Yu J, Carter L, Lang NP, Kadlubar FF, Ratnasinghe LD, Ambrosone CB (2006) Association between catalase phenotype and genotype: modification by epidemiologic factors. Cancer Epidemol Biomarkers Rev 15(6):1217–1222

    Article  CAS  Google Scholar 

  44. Liang B, Zhang A-H, Xi X-G, Zhang B-X, Huang X-X (2009) Relationship between myeloperoxidase and catalase genetic polymorphism and their activities with arsenic poisoning caused by coal-burning. Chin J Endemiol 28(3):272–275

    CAS  Google Scholar 

  45. NCI SNP500. http://snp500cancer.nci.nih.gov

  46. Putnam CD, Arvai AS, Bourne Y, Tainer JA (2000) Active and inhibited human catalase structures: ligand and NADPH-binding and catalytic mechanism. J Mol Biol 296:295–309

    Article  PubMed  CAS  Google Scholar 

  47. Diaz A, Horjales E, Rudiña-Piñera E, Arreola R, Hansberg W (2004) Unusual Cys–Tyr covalent bond in a large catalase. J Mol Biol 342:971–985

    Article  PubMed  CAS  Google Scholar 

  48. Góth L, Csordás M, Kósa Zs, Simics E (2011) A weak association of blood catalase activity and +22348C → T polymorphism of the catalase gene in Hungarian female vitiligo patients. Clin Exper Med(Budapest) 5:1–7

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from OTKA [Hungarian Research Foundation K71902] and Zsigmond Diabetes Foundation [Hungarian Academy of Science, Department of Medicine]. The authors thank WN. Bigler (San Francisco State University, San Francisco, USA) and É. Gombos (Department of Clinical Biochemistry and Molecular Pathology, University of Debrecen, Debrecen, Hungary), K. Kocsordi (Department of Biomedical Laboratory and Imaging Science, University of Debrecen, Debrecen, Hungary) for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Góth.

Additional information

Zsuzsanna Kósa, Zsolt Fejes, Teréz Nagy, Melinda Csordás, Enikő Simics, Éva Remenyik, László Góth contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kósa, Z., Fejes, Z., Nagy, T. et al. Catalase −262C>T polymorphisms in Hungarian vitiligo patients and in controls: further acatalasemia mutations in Hungary. Mol Biol Rep 39, 4787–4795 (2012). https://doi.org/10.1007/s11033-011-1272-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1272-6

Keywords

Navigation