Molecular Biology Reports

, Volume 39, Issue 4, pp 4509–4518 | Cite as

Role of microRNAs in endothelial inflammation and senescence

  • Bing Qin
  • Huan Yang
  • Bo Xiao


The functionality of endothelial cells is fundamental for the homoeostasis of the vascular system. Increasing evidence shows that endothelial inflammation and senescence contribute greatly to multiple vascular diseases including atherosclerosis. However, little is known regarding the complex upstream regulators of gene expression and translation involved in these responses. MicroRNAs (miRNAs) have emerged as a novel class of endogenous, small, non-coding RNAs that negatively regulate over 30% of genes in a cell via degradation or translational inhibition of their target mRNAs. During the past few years, miRNAs have emerged as key regulators for endothelial biology and function. Endothelial inflammation is critically regulated by miRNAs such as miR-126 and miR-10a in vitro and in vivo. Endothelial aging is additionally controlled by miR-217 and miR-34a. In this review, we summarize the role of miRNAs and their target genes in endothelial inflammation and senescence, and discuss their applicability as drug targets.


Endothelial cells MicroRNA Inflammation Senescence Atherosclerosis 



This study was supported by the National Nature Science Foundation of China (No. 81070962).


  1. 1.
    Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ (2006) Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367(9524):1747–1757. doi: 10.1016/S0140-6736(06)68770-9 PubMedCrossRefGoogle Scholar
  2. 2.
    Vanhoutte PM, Shimokawa H, Tang EH, Feletou M (2009) Endothelial dysfunction and vascular disease. Acta Physiol (Oxf) 196(2):193–222. doi: 10.1111/j.1748-1716.2009.01964.x CrossRefGoogle Scholar
  3. 3.
    Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695. doi: 10.1056/NEJMra043430 PubMedCrossRefGoogle Scholar
  4. 4.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420(6917):868–874. doi: 10.1038/nature01323nature01323 PubMedCrossRefGoogle Scholar
  5. 5.
    Schleser S, Ringseis R, Eder K (2006) Conjugated linoleic acids have no effect on TNF alpha-induced adhesion molecule expression, U937 monocyte adhesion, and chemokine release in human aortic endothelial cells. Atherosclerosis 186(2):337–344. doi: 10.1016/j.atherosclerosis.2005.08.018 PubMedCrossRefGoogle Scholar
  6. 6.
    Chae YJ, Kim CH, Ha TS, Hescheler J, Ahn HY, Sachinidis A (2007) Epigallocatechin-3-O-gallate inhibits the angiotensin II-induced adhesion molecule expression in human umbilical vein endothelial cell via inhibition of MAPK pathways. Cell Physiol Biochem 20(6):859–866. doi: 10.1159/000110446110446 PubMedCrossRefGoogle Scholar
  7. 7.
    Brandes RP, Fleming I, Busse R (2005) Endothelial aging. Cardiovasc Res 66(2):286–294. doi: 10.1016/j.cardiores.2004.12.027 PubMedCrossRefGoogle Scholar
  8. 8.
    Minamino T, Komuro I (2007) Vascular cell senescence: contribution to atherosclerosis. Circ Res 100(1):15–26. doi: 10.1161/01.RES.0000256837.40544.4a PubMedCrossRefGoogle Scholar
  9. 9.
    Hayashi T, Yano K, Matsui-Hirai H, Yokoo H, Hattori Y, Iguchi A (2008) Nitric oxide and endothelial cellular senescence. Pharmacol Ther 120(3):333–339. doi: 10.1016/j.pharmthera.2008.09.002 PubMedCrossRefGoogle Scholar
  10. 10.
    Nakajima M, Hashimoto M, Wang F, Yamanaga K, Nakamura N, Uchida T, Yamanouchi K (1997) Aging decreases the production of PGI2 in rat aortic endothelial cells. Exp Gerontol 32(6):685–693PubMedCrossRefGoogle Scholar
  11. 11.
    Erusalimsky JD, Skene C (2009) Mechanisms of endothelial senescence. Exp Physiol 94(3):299–304. doi: 10.1113/expphysiol.2008.043133 PubMedCrossRefGoogle Scholar
  12. 12.
    Neubert K, Haberland A, Kruse I, Wirth M, Schimke I (1997) The ratio of formation of prostacyclin/thromboxane A2 in HUVEC decreased in each subsequent passage. Prostaglandins 54(1):447–462PubMedCrossRefGoogle Scholar
  13. 13.
    Seals DR, Jablonski KL, Donato AJ (2011) Aging and vascular endothelial function in humans. Clin Sci (Lond) 120(9):357–375. doi: 10.1042/CS20100476 CrossRefGoogle Scholar
  14. 14.
    Zou Y, Yoon S, Jung KJ, Kim CH, Son TG, Kim MS, Kim YJ, Lee J, Yu BP, Chung HY (2006) Upregulation of aortic adhesion molecules during aging. J Gerontol A Biol Sci Med Sci 61(3):232–244PubMedCrossRefGoogle Scholar
  15. 15.
    Mariotti M, Castiglioni S, Bernardini D, Maier JA (2006) Interleukin 1 alpha is a marker of endothelial cellular senescent. Immun Ageing 3:4. doi: 10.1186/1742-4933-3-4 PubMedCrossRefGoogle Scholar
  16. 16.
    Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  17. 17.
    Filipowicz W, Bhattacharyya SN, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9(2):102–114PubMedCrossRefGoogle Scholar
  18. 18.
    Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D (2008) miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell 15(2):272–284. doi: 10.1016/j.devcel.2008.07.008 PubMedCrossRefGoogle Scholar
  19. 19.
    Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ, Kuo CJ (2008) Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development 135(24):3989–3993. doi: 10.1242/dev.029736 PubMedCrossRefGoogle Scholar
  20. 20.
    Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN (2008) The endothelial-specific microRNA miR-126 governs vascular integrity and angiogenesis. Dev Cell 15(2):261–271. doi: 10.1016/j.devcel.2008.07.002 PubMedCrossRefGoogle Scholar
  21. 21.
    Zou J, Li WQ, Li Q, Li XQ, Zhang JT, Liu GQ, Chen J, Qiu XX, Tian FJ, Wang ZZ, Zhu N, Qin YW, Shen B, Liu TX, Jing Q (2011) Two functional microRNA-126 s repress a novel target gene p21-activated kinase 1 to regulate vascular integrity in zebrafish. Circ Res 108(2):201–209. doi: 10.1161/CIRCRESAHA.110.225045 PubMedCrossRefGoogle Scholar
  22. 22.
    Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ (2008) MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci USA 105(5):1516–1521. doi: 10.1073/pnas.0707493105 PubMedCrossRefGoogle Scholar
  23. 23.
    Harris TA, Yamakuchi M, Kondo M, Oettgen P, Lowenstein CJ (2010) Ets-1 and Ets-2 regulate the expression of microRNA-126 in endothelial cells. Arterioscler Thromb Vasc Biol 30(10):1990–1997. doi: 10.1161/ATVBAHA.110.211706 PubMedCrossRefGoogle Scholar
  24. 24.
    Sato Y (2001) Role of ETS family transcription factors in vascular development and angiogenesis. Cell Struct Funct 26(1):19–24PubMedCrossRefGoogle Scholar
  25. 25.
    Zhan Y, Brown C, Maynard E, Anshelevich A, Ni W, Ho IC, Oettgen P (2005) Ets-1 is a critical regulator of Ang II-mediated vascular inflammation and remodeling. J Clin Invest 115(9):2508–2516. doi: 10.1172/JCI24403 PubMedCrossRefGoogle Scholar
  26. 26.
    Oettgen P (2006) Regulation of vascular inflammation and remodeling by ETS factors. Circ Res 99(11):1159–1166. doi: 10.1161/01.RES.0000251056.85990.db PubMedCrossRefGoogle Scholar
  27. 27.
    Dejana E, Taddei A, Randi AM (2007) Foxs and Ets in the transcriptional regulation of endothelial cell differentiation and angiogenesis. Biochim Biophys Acta 1775(2):298–312. doi: 10.1016/j.bbcan.2007.05.003 PubMedGoogle Scholar
  28. 28.
    Naito S, Shimizu S, Maeda S, Wang J, Paul R, Fagin JA (1998) Ets-1 is an early response gene activated by ET-1 and PDGF-BB in vascular smooth muscle cells. Am J Physiol 274(2 Pt 1):C472–C480PubMedGoogle Scholar
  29. 29.
    Redlich K, Kiener HP, Schett G, Tohidast-Akrad M, Selzer E, Radda I, Stummvoll GH, Steiner CW, Groger M, Bitzan P, Zenz P, Smolen JS, Steiner G (2001) Overexpression of transcription factor Ets-1 in rheumatoid arthritis synovial membrane: regulation of expression and activation by interleukin-1 and tumor necrosis factor alpha. Arthritis Rheum 44(2):266–274PubMedCrossRefGoogle Scholar
  30. 30.
    Goetze S, Kintscher U, Kaneshiro K, Meehan WP, Collins A, Fleck E, Hsueh WA, Law RE (2001) TNFalpha induces expression of transcription factors c-fos, Egr-1, and Ets-1 in vascular lesions through extracellular signal-regulated kinases 1/2. Atherosclerosis 159(1):93–101PubMedCrossRefGoogle Scholar
  31. 31.
    Zernecke A, Bidzhekov K, Noels H, Shagdarsuren E, Gan L, Denecke B, Hristov M, Koppel T, Jahantigh MN, Lutgens E, Wang S, Olson EN, Schober A, Weber C (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2(100):ra81. doi: 10.1126/scisignal.2000610 PubMedCrossRefGoogle Scholar
  32. 32.
    Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, Jeyaseelan K (2009) Expression profile of MicroRNAs in young stroke patients. PLoS One 4(11):e7689. doi: 10.1371/journal.pone.0007689 PubMedCrossRefGoogle Scholar
  33. 33.
    Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S (2010) Circulating microRNAs in patients with coronary artery disease. Circ Res 107(5):677–684. doi: 10.1161/CIRCRESAHA.109.215566 PubMedCrossRefGoogle Scholar
  34. 34.
    Granger DN, Vowinkel T, Petnehazy T (2004) Modulation of the inflammatory response in cardiovascular disease. Hypertension 43(5):924–931PubMedCrossRefGoogle Scholar
  35. 35.
    Faraoni I, Antonetti FR, Cardone J, Bonmassar E (2009) miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta 1792(6):497–505. doi: 10.1016/j.bbadis.2009.02.013 PubMedGoogle Scholar
  36. 36.
    Martin MM, Lee EJ, Buckenberger JA, Schmittgen TD, Elton TS (2006) MicroRNA-155 regulates human angiotensin II type 1 receptor expression in fibroblasts. J Biol Chem 281(27):18277–18284. doi: 10.1074/jbc.M601496200 PubMedCrossRefGoogle Scholar
  37. 37.
    Martin MM, Buckenberger JA, Jiang J, Malana GE, Nuovo GJ, Chotani M, Feldman DS, Schmittgen TD, Elton TS (2007) The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microrna-155 binding. J Biol Chem 282(33):24262–24269. doi: 0.1074/jbc.M701050200 PubMedCrossRefGoogle Scholar
  38. 38.
    Zhu N, Zhang D, Chen S, Liu X, Lin L, Huang X, Guo Z, Liu J, Wang Y, Yuan W, Qin Y (2011) Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. doi: 10.1016/j.atherosclerosis.2010.12.024
  39. 39.
    Altuvia Y, Landgraf P, Lithwick G, Elefant N, Pfeffer S, Aravin A, Brownstein MJ, Tuschl T, Margalit H (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706. doi: 10.1093/nar/gki567 PubMedCrossRefGoogle Scholar
  40. 40.
    Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108(9):3068–3071. doi: 10.1182/blood-2006-01-012369 PubMedCrossRefGoogle Scholar
  41. 41.
    Chen Y, Banda M, Speyer CL, Smith JS, Rabson AB, Gorski DH (2010) Regulation of the expression and activity of the antiangiogenic homeobox gene GAX/MEOX2 by ZEB2 and microRNA-221. Mol Cell Biol 30(15):3902–3913. doi: 10.1128/MCB.01237-09 PubMedCrossRefGoogle Scholar
  42. 42.
    Dentelli P, Rosso A, Orso F, Olgasi C, Taverna D, Brizzi MF (2010) microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol 30(8):1562–1568. doi: 10.1161/ATVBAHA.110.206201 PubMedCrossRefGoogle Scholar
  43. 43.
    Liu X, Cheng Y, Zhang S, Lin Y, Yang J, Zhang C (2009) A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res 104(4):476–487. doi: 10.1161/CIRCRESAHA.108.185363 PubMedCrossRefGoogle Scholar
  44. 44.
    Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100(8):1164–1173. doi: 10.1161/01.RES.0000265065.26744.17 PubMedCrossRefGoogle Scholar
  45. 45.
    Suarez Y, Wang C, Manes TD, Pober JS (2010) Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol 184(1):21–25. doi: 10.4049/jimmunol.0902369 PubMedCrossRefGoogle Scholar
  46. 46.
    Baker RG, Hayden MS, Ghosh S (2011) NF-kappaB, inflammation, and metabolic disease. Cell Metab 13(1):11–22. doi: 10.1016/j.cmet.2010.12.008 PubMedCrossRefGoogle Scholar
  47. 47.
    de Winther MP, Kanters E, Kraal G, Hofker MH (2005) Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol 25(5):904–914. doi: 10.1161/01.ATV.0000160340.72641.87 PubMedCrossRefGoogle Scholar
  48. 48.
    Savoia C, Schiffrin EL (2007) Vascular inflammation in hypertension and diabetes: molecular mechanisms and therapeutic interventions. Clin Sci (Lond) 112(7):375–384. doi: 10.1042/CS20060247 CrossRefGoogle Scholar
  49. 49.
    Fang Y, Shi C, Manduchi E, Civelek M, Davies PF (2010) MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci USA 107(30):13450–13455. doi: 10.1073/pnas.1002120107 PubMedCrossRefGoogle Scholar
  50. 50.
    Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412(6844):346–351. doi: 10.1038/3508559735085597 PubMedCrossRefGoogle Scholar
  51. 51.
    Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW (1999) The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev 13(3):270–283PubMedCrossRefGoogle Scholar
  52. 52.
    Pan J, Hu H, Zhou Z, Sun L, Peng L, Yu L, Liu J, Yang Z, Ran Y (2010) Tumor-suppressive mir-663 gene induces mitotic catastrophe growth arrest in human gastric cancer cells. Oncol Rep 24(1):105–112PubMedGoogle Scholar
  53. 53.
    Tili E, Michaille JJ, Adair B, Alder H, Limagne E, Taccioli C, Ferracin M, Delmas D, Latruffe N, Croce CM (2010) Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD. Carcinogenesis 31(9):1561–1566. doi: 10.1093/carcin/bgq143 PubMedCrossRefGoogle Scholar
  54. 54.
    Ni CW, Qiu H, Jo H (2011) MicroRNA-663 upregulated by oscillatory shear stress plays a role in inflammatory response of endothelial cells. Am J Physiol Heart Circ Physiol. doi: 10.1152/ajpheart.00829.2010
  55. 55.
    Anggrahini DW, Emoto N, Nakayama K, Widyantoro B, Adiarto S, Iwasa N, Nonaka H, Rikitake Y, Kisanuki YY, Yanagisawa M, Hirata K (2009) Vascular endothelial cell-derived endothelin-1 mediates vascular inflammation and neointima formation following blood flow cessation. Cardiovasc Res 82(1):143–151. doi: 10.1093/cvr/cvp026 PubMedCrossRefGoogle Scholar
  56. 56.
    Li D, Yang P, Xiong Q, Song X, Yang X, Liu L, Yuan W, Rui YC (2010) MicroRNA-125a/b-5p inhibits endothelin-1 expression in vascular endothelial cells. J Hypertens 28(8):1646–1654. doi: 10.1097/HJH.0b013e32833a4922 PubMedCrossRefGoogle Scholar
  57. 57.
    Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G, Lauro R, Federici M (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120(15):1524–1532. doi: 10.1161/CIRCULATIONAHA.109.864629 PubMedCrossRefGoogle Scholar
  58. 58.
    Potente M, Dimmeler S (2008) Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle 7(14):2117–2122PubMedCrossRefGoogle Scholar
  59. 59.
    Ota H, Akishita M, Eto M, Iijima K, Kaneki M, Ouchi Y (2007) Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 43(5):571–579. doi: 10.1016/j.yjmcc.2007.08.008 PubMedCrossRefGoogle Scholar
  60. 60.
    Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, Rahman I (2010) Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501(1):79–90. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  61. 61.
    Ito T, Yagi S, Yamakuchi M (2010) MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 398(4):735–740. doi: 10.1016/j.bbrc.2010.07.012 PubMedCrossRefGoogle Scholar
  62. 62.
    Hill JM, Zalos G, Halcox JP, Schenke WH, Waclawiw MA, Quyyumi AA, Finkel T (2003) Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 348(7):593–600. doi: 10.1056/NEJMoa022287348/7/593 PubMedCrossRefGoogle Scholar
  63. 63.
    Zhao T, Li J, Chen AF (2010) MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 299(1):E110–E116. doi: 10.1152/ajpendo.00192.2010 PubMedCrossRefGoogle Scholar
  64. 64.
    Whaley-Connell A, McCullough PA, Sowers JR (2011) The role of oxidative stress in the metabolic syndrome. Rev Cardiovasc Med 12(1):21–29PubMedGoogle Scholar
  65. 65.
    Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F, Capogrossi MC (2011) miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ. doi: 10.1038/cdd.2011.42
  66. 66.
    Suarez Y, Fernandez-Hernando C, Yu J, Gerber SA, Harrison KD, Pober JS, Iruela-Arispe ML, Merkenschlager M, Sessa WC (2008) Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci USA 105(37):14082–14087. doi: 10.1073/pnas.0804597105 PubMedCrossRefGoogle Scholar
  67. 67.
    Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, Dimmeler S (2009) MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324(5935):1710–1713. doi: 10.1126/science.1174381 PubMedCrossRefGoogle Scholar
  68. 68.
    Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Muck C, Laschober GT, Lepperdinger G, Sampson N, Berger P, Herndler-Brandstetter D, Wieser M, Kuhnel H, Strasser A, Rinnerthaler M, Breitenbach M, Mildner M, Eckhart L, Tschachler E, Trost A, Bauer JW, Papak C, Trajanoski Z, Scheideler M, Grillari-Voglauer R, Grubeck-Loebenstein B, Jansen-Durr P, Grillari J (2010) miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 9(2):291–296. doi: 10.1111/j.1474-9726.2010.00549.x PubMedCrossRefGoogle Scholar
  69. 69.
    van Solingen C, Seghers L, Bijkerk R, Duijs JM, Roeten MK, van Oeveren-Rietdijk AM, Baelde HJ, Monge M, Vos JB, de Boer HC, Quax PH, Rabelink TJ, van Zonneveld AJ (2009) Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J Cell Mol Med 13(8A):1577–1585. doi: 10.1111/j.1582-4934.2008.00613.x PubMedCrossRefGoogle Scholar
  70. 70.
    Fluiter K, Mook OR, Baas F (2009) The therapeutic potential of LNA-modified siRNAs: reduction of off-target effects by chemical modification of the siRNA sequence. Methods Mol Biol 487:189–203PubMedGoogle Scholar
  71. 71.
    Cook-Mills JM (2006) Hydrogen peroxide activation of endothelial cell-associated MMPs during VCAM-1-dependent leukocyte migration. Cell Mol Biol (Noisy-le-grand) 52(4):8–16Google Scholar
  72. 72.
    Stanczyk J, Ospelt C, Karouzakis E, Filer A, Raza K, Kolling C, Gay R, Buckley CD, Tak PP, Gay S, Kyburz D (2011) Altered expression of microRNA-203 in rheumatoid arthritis synovial fibroblasts and its role in fibroblast activation. Arthritis Rheum 63(2):373–381. doi: 10.1002/art.30115 PubMedCrossRefGoogle Scholar
  73. 73.
    Autiero M, Luttun A, Tjwa M, Carmeliet P (2003) Placental growth factor and its receptor, vascular endothelial growth factor receptor-1: novel targets for stimulation of ischemic tissue revascularization and inhibition of angiogenic and inflammatory disorders. J Thromb Haemost 1(7):1356–1370PubMedCrossRefGoogle Scholar
  74. 74.
    Watanabe Y, Lee SW, Detmar M, Ajioka I, Dvorak HF (1997) Vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) delays and induces escape from senescence in human dermal microvascular endothelial cells. Oncogene 14(17):2025–2032. doi: 10.1038/sj.onc.1201033 PubMedCrossRefGoogle Scholar
  75. 75.
    Thill M, Berna MJ, Kunst F, Wege H, Strunnikova NV, Gordiyenko N, Grierson R, Richard G, Csaky KG (2011) SU5416 induces premature senescence in endothelial progenitor cells from patients with age-related macular degeneration. Mol Vis 17:85–98PubMedGoogle Scholar
  76. 76.
    Cascio S, D’Andrea A, Ferla R, Surmacz E, Gulotta E, Amodeo V, Bazan V, Gebbia N, Russo A (2010) miR-20b modulates VEGF expression by targeting HIF-1 alpha and STAT3 in MCF-7 breast cancer cells. J Cell Physiol 224(1):242–249. doi: 10.1002/jcp.22126 PubMedGoogle Scholar
  77. 77.
    Winning S, Splettstoesser F, Fandrey J, Frede S (2010) Acute hypoxia induces HIF-independent monocyte adhesion to endothelial cells through increased intercellular adhesion molecule-1 expression: the role of hypoxic inhibition of prolyl hydroxylase activity for the induction of NF-kappa B. J Immunol 185(3):1786–1793. doi: 10.4049/jimmunol.0903244 PubMedCrossRefGoogle Scholar
  78. 78.
    Michiels C, Arnould T, Remacle J (2000) Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochim Biophys Acta 1497(1):1–10. doi: S0167-4889(00)00041-0 PubMedCrossRefGoogle Scholar
  79. 79.
    Angelo LS, Kurzrock R (2007) Vascular endothelial growth factor and its relationship to inflammatory mediators. Clin Cancer Res 13(10):2825–2830. doi: 10.1158/1078-0432.CCR-06-2416 PubMedCrossRefGoogle Scholar
  80. 80.
    Taguchi A, Yanagisawa K, Tanaka M, Cao K, Matsuyama Y, Goto H, Takahashi T (2008) Identification of hypoxia-inducible factor-1 alpha as a novel target for miR-17-92 microRNA cluster. Cancer Res 68(14):5540–5545. doi: 10.1158/0008-5472.CAN-07-6460 PubMedCrossRefGoogle Scholar
  81. 81.
    Yamakuchi M, Lotterman CD, Bao C, Hruban RH, Karim B, Mendell JT, Huso D, Lowenstein CJ (2010) P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci USA 107(14):6334–6339. doi: 10.1073/pnas.0911082107 PubMedCrossRefGoogle Scholar
  82. 82.
    Yamakuchi M, Yagi S, Ito T, Lowenstein CJ (2011) MicroRNA-22 regulates hypoxia signaling in colon cancer cells. PLoS One 6(5):20291. doi: 10.1371/journal.pone.0020291PONE-D-11-01497 CrossRefGoogle Scholar
  83. 83.
    Horwich MD, Zamore PD (2008) Design and delivery of antisense oligonucleotides to block microRNA function in cultured Drosophila and human cells. Nat Protoc 3(10):1537–1549. doi: 10.1038/nprot.2008.145 PubMedCrossRefGoogle Scholar
  84. 84.
    Mae M, Andaloussi SE, Lehto T, Langel U (2009) Chemically modified cell-penetrating peptides for the delivery of nucleic acids. Expert Opin Drug Deliv 6(11):1195–1205. doi: 10.1517/17425240903213688 PubMedCrossRefGoogle Scholar
  85. 85.
    Zhang G, Wang Q, Xu R (2010) Therapeutics based on microRNA: a new approach for liver cancer. Curr Genomics 11(5):311–325. doi: 10.2174/138920210791616671 PubMedCrossRefGoogle Scholar
  86. 86.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689. doi: 10.1038/nature04303 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Neurology, Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations