Skip to main content

Advertisement

Log in

Comparative molecular characterization of the regucalcin (RGN) gene in rainbow trout (Oncorhynchus mykiss) and maraena whitefish (Coregonus marena)

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Ca2+-binding protein regucalcin (RGN) is crucial for the regulation of Ca2+ ion homeostasis and signal transduction of cells. It is involved in the regulation of Ca2+-dependent protein kinases and Ca2+ pump enzymes in cell membranes. Comparative transcriptome analysis in healthy fish of two aquacultured rainbow trout (Oncorhynchus mykiss) lines (BORN, TCO) varying in susceptibility to environmental stress identified significant differences in the expression of the RGN gene. Therefore, we firstly determined the full genomic DNA and cDNA sequence of RGN gene from rainbow trout and comparatively investigated the complete cDNA sequence in another salmonid fish dedicated for local aquaculture, the maraena whitefish (Coregonus marena). The sequence coding region translates for proteins of 298 and 299 amino acids (aa), respectively, indicating a high conservation of RGN proteins (95.7% aa identity) between the two related salmonids. In the second place, we generated RGN gene expression profiles after pathogen (Aeromonas salmonicidae subsp. salmonicida) and temperature (8 and 23°C) challenge in the two rainbow trout lines using salmon microarrays and quantitative RT-PCR. The profiles not only verified initially detected gene expression differences, they also display a tissue specific gene expression in dependence from the stressor and time. The differences in gene expression support our assumption that RGN might play a role in recovery of rainbow trout after environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Machaca K (2010) Ca2+ signaling, genes and the cell cycle. Cell Calcium 48:243–250

    Article  PubMed  CAS  Google Scholar 

  2. Berridge MJ (1997) Elementary and global aspects of calcium signalling. J Physiol 499:291–306

    PubMed  CAS  Google Scholar 

  3. Marshall WS (2002) Na+, Cl, Ca2+ and Zn2+ transport by fish gills: retrospective review and prospective synthesis. J Exp Zool 293:264–283

    Article  PubMed  CAS  Google Scholar 

  4. Tufty RM, Kretsinger RH (1975) Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme. Science 187:167–169

    Article  PubMed  CAS  Google Scholar 

  5. Shimokawa N, Yamaguchi M (1993) Molecular cloning and sequencing of the cDNA coding for a calcium-binding protein regucalcin from rat liver. FEBS Lett 327:251–255

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi M, Yamamoto T (1978) Purification of calcium binding substance from soluble fraction of normal rat liver. Chem Pharm Bull (Tokyo) 26:1915–1918

    Article  CAS  Google Scholar 

  7. Fujita T, Shirasawa T, Maruyama N (1999) Expression and structure of senescence marker protein-30 (SMP30) and its biological significance. Mech Ageing Dev 107:271–280

    Article  PubMed  CAS  Google Scholar 

  8. Yamaguchi M, Ueoka S (1998) Expression of calcium-binding protein regucalcin mRNA in fetal rat liver is stimulated by calcium administration. Mol Cell Biochem 178:283–287

    Article  PubMed  CAS  Google Scholar 

  9. Takahashi H, Yamaguchi M (1995) Increase of (Ca(2+)−Mg2+)-ATPase activity in hepatic plasma membranes of rats administered orally calcium: the endogenous role of regucalcin. Mol Cell Biochem 144:1–6

    Article  PubMed  CAS  Google Scholar 

  10. Yamaguchi M, Kanayama Y (1996) Calcium-binding protein regucalcin inhibits deoxyribonucleic acid synthesis in the nuclei of regenerating rat liver. Mol Cell Biochem 162:121–126

    Article  PubMed  CAS  Google Scholar 

  11. Yamaguchi M, Ueoka S (1997) Inhibitory effect of calcium-binding protein regucalcin on ribonucleic acid synthesis in isolated rat liver nuclei. Mol Cell Biochem 173:169–175

    Article  PubMed  CAS  Google Scholar 

  12. Tsurusaki Y, Yamaguchi M (2003) Overexpression of regucalcin modulates tumor-related gene expression in cloned rat hepatoma H4-II-E cells. J Cell Biochem 90:619–626

    Article  PubMed  CAS  Google Scholar 

  13. Yamaguchi M (2000) The role of regucalcin in nuclear regulation of regenerating liver. Biochem Biophys Res Commun 276:1–6

    Article  PubMed  CAS  Google Scholar 

  14. Izumi T, Yamaguchi M (2004) Overexpression of regucalcin suppresses cell death and apoptosis in cloned rat hepatoma H4-II-E cells induced by lipopolysaccharide, PD 98059, dibucaine, or Bay K 8644. J Cell Biochem 93:598–608

    Article  PubMed  CAS  Google Scholar 

  15. Chakraborti S, Bahnson BJ (2010) Crystal structure of human senescence marker protein 30: insights linking structural, enzymatic, and physiological functions. Biochemistry 49:3436–3444

    Article  PubMed  CAS  Google Scholar 

  16. von Schalburg KR, Cooper GA, Leong J, Robb A, Lieph R, Rise ML, Davidson WS, Koop BF (2008) Expansion of the genomics research on Atlantic salmon Salmo salar L. project (GRASP) microarray tools. J Fish Biol 72:2051–2070

    Article  Google Scholar 

  17. Sedgwick SD (1985) Trout farming handbook, 4th edn. Fishing News Books, Farnham, p 160

    Google Scholar 

  18. Yamazaki T (1991) Culture of foreign origin fishes. Farming Jpn (25th Anniversary) 25:41–46

    Google Scholar 

  19. Burr SE, Pugovkin D, Wahli T, Segner H, Frey J (2005) Attenuated virulence of an Aeromonas salmonicida subsp. salmonicida type III secretion mutant in a rainbow trout model. Microbiology 151:2111–2118

    Article  PubMed  CAS  Google Scholar 

  20. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  21. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    PubMed  CAS  Google Scholar 

  22. Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150–163

    Article  PubMed  CAS  Google Scholar 

  23. Misawa H, Yamaguchi M (2000) The gene of Ca2+-binding protein regucalcin is highly conserved in vertebrate species. Int J Mol Med 6:191–196

    PubMed  CAS  Google Scholar 

  24. Anders E (1986) Stand der Züchtung und Reproduktion brackwasseradaptierter Regenbogenforellenbestände im Küstenbereich der DDR. Fischerei-Forschung 72

  25. Korytar T, Verleih M, Rebl A, Anders E, Köllner B, Goldammer T (2009) Investigation of genomic, transcriptomic and functional differences of two rainbow trout strains with different resistance against infections–the DIREFO project. In: 11th Congress of the ISDCI, Prague, Czech Republic, p 78. http://lib.congressprague.cz/isdci2009/

  26. Rebl A, Anders E, Wimmers K, Goldammer T (2009) Cloning and tissue-specific expression of a delta-COP homologue in a freshwater and a brackish water-adapted strain of rainbow trout (Oncorhynchus mykiss). Genes Genetic Syst 84:239–243

    Article  CAS  Google Scholar 

  27. Verleih M, Rebl A, Kollner B, Korytar T, Kotterba G, Anders E, Wimmers K, Goldammer T (2010) Molecular characterization of PRR13 and its tissue-specific expression in rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 36:1271–1276

    Article  PubMed  CAS  Google Scholar 

  28. Fujita T, Shirasawa T, Uchida K, Maruyama N (1992) Isolation of cDNA clone encoding rat senescence marker protein-30 (SMP30) and its tissue distribution. Biochim Biophys Acta 1132(3):297–305

    PubMed  CAS  Google Scholar 

  29. Fujita T, Shirasawa T, Maruyama N (1996) Isolation and characterization of genomic and cDNA clones encoding mouse senescence marker protein-30 (SMP30). Biochim Biophys Acta 1308(1):49–57

    PubMed  Google Scholar 

  30. Hanahisa Y, Yamaguchi M (1998) Stimulatory effect of calcium-binding protein regucalcin on phosphatase activity in the brain cytosol of rats with different ages. Brain Res Bull 46:347–351

    Article  PubMed  CAS  Google Scholar 

  31. Flik G, Verbost PM (1993) Calcium transport in fish Gills and intestine. J Exp Biol 184:17–29

    CAS  Google Scholar 

  32. Yamaguchi M (2005) Role of regucalcin in maintaining cell homeostasis and function (review). Int J Mol Med 15:371–389

    PubMed  CAS  Google Scholar 

  33. Yamaguchi M, Shibano H (1987) Calcium-binding protein isolated from rat liver cytosol reverses activation of pyruvate kinase by Ca2+. Chem Pharm Bull (Tokyo) 35:2025–2029

    Article  CAS  Google Scholar 

  34. Wagner F, Heidtke KR, Drescher B, Radelof U (2007) Development and perspectives of scientific services offered by genomic biological resource centres. Brief Funct Genomic Proteomic 6:163–170

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to B. Schöpel, I. Hennings, and M. Fuchs for excellent technical assistance. This work was funded by the Exzellenzförderprogramm Mecklenburg-Vorpommern 20082010 (project AU08026 entitled DIREFO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Goldammer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11033_2011_1216_MOESM1_ESM.tif

Supplementary Figure S1 Alignment of predicted RGN protein sequences from rainbow trout and maraena whitefish with all known teleostean homologues as well as respective sequences of higher vertebrates. Accession numbers of used proteins and abbreviations are listed in Table 2. Identical and strongly similar amino acids are labeled by black and dark gray underlay as well as white letters; similar amino acids are marked by light gray underlay. Conceptionally translated sequences, which are derived in this study, are written in bold letters. The localization of the SGL multi-domain (SMP-30/Gluconolaconase/LRE-like region) is marked by a black bracket. Black arrows indicate conserved positions of Ca2+ coordination sides at position E18, N154 and D204. (TIFF 7100 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verleih, M., Rebl, A., Köllner, B. et al. Comparative molecular characterization of the regucalcin (RGN) gene in rainbow trout (Oncorhynchus mykiss) and maraena whitefish (Coregonus marena). Mol Biol Rep 39, 4291–4300 (2012). https://doi.org/10.1007/s11033-011-1216-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1216-1

Keywords

Navigation