Skip to main content
Log in

Glutaredoxin 2a, a mitochondrial isoform, plays a protective role in a human cell line under serum deprivation

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The roles of mitochondrial glutaredoxin (Grx2a) under serum deprivation were assessed using the human stable HepG2 cell lines overexpressing or down-regulating Grx2a. The Grx2a-overexpressing stable cells displayed enhanced proliferation, decreased reactive oxygen species (ROS) and caspase-3 activity levels, and increased total GSH level, compared to the vector control cells. These characteristics of the overexpressing stable cells were reversed by down-regulating Grx2a in the same cell line. In the limited serum conditions, the Grx2a-overexpressing stable pcDNA3.0/HA-Grx2a cells exhibited higher cellular viabilities and total GSH level, and showed much lower enhancement in ROS and caspase-3 activity levels than the vector control pcDNA3.0/HA cells. However, the Grx2a-down-regulating stable cells gave rise to diminished cellular viabilities and further decreased total GSH level, and contained significantly higher ROS and caspase-3 activity levels, under serum deprivation than the vector control cells. These results suggest that Grx2a plays proliferative and anti-apoptotic roles under serum deprivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Grx2a:

Mitochondrial glutaredoxin

GSH:

Glutathione

HED:

2-Hydroxyethyl disulfide

PCR:

Polymerase chain reaction

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcriptase-polymerase chain reaction

References

  1. Hashemy SI, Johansson C, Berndt C, Lillig CH, Holmgren A (2007) Oxidation and S-nitrosylation of cysteines in human cytosolic and mitochondrial glutaredoxins—effects on structure and activity. J Biol Chem 282:14428–14436

    Article  PubMed  CAS  Google Scholar 

  2. Holmgren A, Johansson C, Berndt C, Lönn ME, Hudemann C, Lillig CH (2005) Thiol redox control via thioredoxin and glutaredoxin systems. Biochem Soc Trans 33(Pt 6):1375–1377

    PubMed  CAS  Google Scholar 

  3. Wingert RA, Galloway JL, Barut B, Foott H, Fraenkel P, Axe JL, Weber GJ, Dooley K, Davidson AJ, Schmid B, Paw BH, Shaw GC, Kingsley P, Palis J, Schubert H, Chen O, Kaplan J, Zon LI (2005) Deficiency of glutaredoxin 5 reveals Fe-S clusters are required for vertebrate haem synthesis. Nature 436:1035–1039

    Article  PubMed  CAS  Google Scholar 

  4. Xing KY, Lou MF (2002) Effect of H2O2 on human lens epithelial cells and the possible mechanism for oxidative repair by thioltransferase. Exp Eye Res 74:113–122

    Article  PubMed  CAS  Google Scholar 

  5. Rodríguez-Manzaneque MT, Tamarit J, Bellí G, Ros J, Herrero E (2002) Grx5 is a mitochondrial glutaredoxin required for the activity of iron/sulfur enzyme. Mol Biol Cell 13:1109–1121

    Article  PubMed  Google Scholar 

  6. Gladyshev VN, Liu A, Novoselov SV, Krysan K, Sun QA, Kryukov VM, Kryukov GV, Lou MF (2001) Identification and characterization of a new mammalian glutaredoxin (thioltransferase), Grx2. J Biol Chem 276:30374–30380

    Article  PubMed  CAS  Google Scholar 

  7. Lundberg M, Johansson C, Chandra J, Enoksson M, Jacobsson G, Ljung J, Johansson M, Holmgren A (2001) Cloning and expression of a novel human glutaredoxin (Grx2) with mitochondrial and nuclear isoforms. J Biol Chem 276:26269–26275

    Article  PubMed  CAS  Google Scholar 

  8. Lillig CH, Lönn ME, Enoksson M, Fernandes AP, Holmgren A (2004) Short interfering RNA-mediated silencing of glutaredoxin 2 increases the sensitivity of HeLa cells toward doxorubicin and phenylarsine oxide. Proc Natl Acad Sci USA 101:13227–13232

    Article  PubMed  CAS  Google Scholar 

  9. Lönn ME, Hudemann C, Berndt C, Cherkasov V, Capani F, Holmgren A, Lillig CH (2008) Expression pattern of human glutaredoxin 2 isoforms: identification and characterization of two testis/cancer cell-specific isoforms. Antioxid Redox Signal 10:547–557

    Article  PubMed  Google Scholar 

  10. Beer SM, Taylor ER, Brown SE, Dahm CC, Costa NJ, Runswick MJ, Murphy MP (2004) Glutaredoxin 2 catalyzes the reversible oxidation and glutathionylation of mitochondrial membrane thiol proteins: implications for mitochondrial redox regulation and antioxidant defense. J Biol Chem 279:47939–47951

    Article  PubMed  CAS  Google Scholar 

  11. Fernando MR, Lechner JM, Löfgren S, Gladyshev VN, Lou MF (2006) Mitochondial thioltransferase (glutaredoxin 2) has GSH-dependent and thioredoxin reductase-dependent peroxidase activities in vitro and in lens epithelial cells. FASEB J 20:2645–2647

    Article  PubMed  CAS  Google Scholar 

  12. Johansson C, Lillig CH, Holmgren A (2004) Human mitochondrial glutaredoxin reduces S-glutathionylated proteins with high affinity accepting electrons from either glutathione or thioredoxin reductase. J Biol Chem 279:7537–7543

    Article  PubMed  CAS  Google Scholar 

  13. Lillig CH, Berndt C, Vergnolle O, Lönn ME, Hudemann C, Bill E, Holmgren A (2005) Characterization of human glutaredoxin 2 as iron-sulfur protein: a possible role as redox sensor. Proc Natl Acad Sci USA 102:8168–8173

    Article  PubMed  CAS  Google Scholar 

  14. Gallogly MM, Starke DW, Leonberg AK, Ospina SM, Mieyal JJ (2008) Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry 47:11144–11157

    Article  PubMed  CAS  Google Scholar 

  15. Zhuge J, Cederbaum AI (2006) Serum deprivation-induced HepG2 cell death is potentiated by CYP2E1. Free Radic Biol Med 40:63–74

    Article  PubMed  CAS  Google Scholar 

  16. Schamberger CJ, Gerner C, Cerni C (2005) Caspase-9 plays a marginal role in serum starvation-induced apoptosis. Exp Cell Res 302:115–128

    Article  PubMed  CAS  Google Scholar 

  17. Takehara T, Liu X, Fujimoto J, Friedman SL, Takahashi H (2001) Expression and role of Bcl-xL in human hepatocellular carcinomas. Hepatology 34:55–61

    Article  PubMed  CAS  Google Scholar 

  18. Steiger-Barraissoul S, Rami A (2009) Serum deprivation induced autophagy and predominantly an AIF-dependent apoptosis in hippocampal HT22 neurons. Apoptosis 14:1274–1288

    Article  PubMed  CAS  Google Scholar 

  19. Bai J, Cederbaum AI (2006) Cycloheximide protects HepG2 cells from serum withdrawl-induced apoptosis by decreasing p53 and phosphorylated p53 levels. J Pharmacol Exp Ther 319:1435–1443

    Article  PubMed  CAS  Google Scholar 

  20. Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 90:8392–8396

    Article  PubMed  CAS  Google Scholar 

  21. Holmgren A (1979) Glutathione-dependent synthesis of deoxyribonucleotides. Characterization of the enzymatic mechanism of Escherichia coli glutaredoxin. J Biol Chem 254:3672–3678

    PubMed  CAS  Google Scholar 

  22. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  23. Yang CF, Shen HM, Ong CN (1999) Protective effect of ebselen against hydrogen peroxide-induced cytotoxicity and DNA damage in HepG2 cells. Biochem Pharmacol 57:273–279

    Article  PubMed  CAS  Google Scholar 

  24. Nakagawa K, Saijo N, Tsuchida S, Sakai M, Tsunokawa Y, Yokota J, Muramatsu M, Sato K, Terada M, Tew KD (1990) Glutathione-S-transferase pi as a determinant of drug resistance in transfectant cell lines. J Biol Chem 265:4296–4301

    PubMed  CAS  Google Scholar 

  25. Royall JA, Ischiropoulos H (1993) Evaluation of 2′,7′-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys 302:348–355

    Article  PubMed  CAS  Google Scholar 

  26. Nordberg J, Arnér ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31:1287–1312

    Article  PubMed  CAS  Google Scholar 

  27. Hampton MB, Fadeel B, Orrenius S (1998) Redox regulation of the caspase during apoptosis. Ann NY Acad Sci 854:328–335

    Article  PubMed  CAS  Google Scholar 

  28. Wang Y, Fang J, Leonard SS, Rao KM (2004) Cadmium inhibits the electron transfer chain and induces reactive oxygen species. Free Radic Biol Med 36:1434–1443

    Article  PubMed  CAS  Google Scholar 

  29. López E, Arce C, Oset-Gasque MJ, Cañadas S, González MP (2005) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40:940–951

    Article  PubMed  Google Scholar 

  30. Xie J, Shaikh ZA (2006) Cadmium-induced apoptosis in rat kidney epithelial cells involves decrease in nuclear factor-kappa B activity. Toxicol Sci 91:299–308

    Article  PubMed  CAS  Google Scholar 

  31. Chrestensen CA, Starke DW, Mieyal JJ (2000) Acute cadmium exposure inactivates thioltransferase (glutaredoxin), inhibits intracellular reduction of protein-glutathione mixed disulfides, and initiates apoptosis. J Biol Chem 275:26556–26565

    Article  PubMed  CAS  Google Scholar 

  32. Bertram C, Hass R (2008) Cellular responses to reactive oxygen species-induced DNA damage and aging. Biol Chem 389:211–220

    Article  PubMed  CAS  Google Scholar 

  33. Matés JM, Segura JA, Alonso FJ, Márquez J (2008) Intracellular redox status and oxidative stress: implications for cell proliferation, apoptosis, and carcinogenesis. Arch Toxicol 82:273–299

    Article  PubMed  Google Scholar 

  34. Sykes MC, Mowbray AL, Jo H (2007) Reversible glutathionylation of caspase-3 by glutaredoxin as a novel redox signaling mechanism in tumor necrosis factor-α-induced cell death. Circ Res 100:152–154

    Article  PubMed  CAS  Google Scholar 

  35. Cotgreave IA, Gerdes RG (1998) Recent trends in glutathione biochemistry. Glutathione-protein interactions: a molecular link between oxidative stress and cell proliferation? Biochem Biophys Res Commun 242:1–9

    Article  PubMed  CAS  Google Scholar 

  36. Dalle-Donne I, Rossi R, Colombo G, Giustarini D, Milzani A (2009) Protein S-glutathionylation: a regulatory device from bacteria to humans. Trends Biochem Sci 34:85–96

    Article  PubMed  CAS  Google Scholar 

  37. Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD (2008) Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 10:1941–1988

    Article  PubMed  CAS  Google Scholar 

  38. Circu ML, Aw TY (2008) Glutathione and apoptosis. Free Radic Res 42:689–706

    Article  PubMed  CAS  Google Scholar 

  39. Cortes-Wanstreet MM, Giedzinski E, Limoli CL, Luderer U (2009) Overexpression of glutamate-cysteine ligase protects human COV434 granuloma tumour cells against oxidative and γ-radiation-induced cell death. Mutagenesis 24:211–224

    Article  PubMed  CAS  Google Scholar 

  40. Ranawat P, Bansal MP (2007) Decreased glutathione levels potentiate the apoptotic efficacy of selenium: possible involvement of p38 and JNK MAPKs—in vitro studies. Mol Cell Biochem 309:21–32

    Article  PubMed  Google Scholar 

  41. Pandey S, Lopez C, Jammu A (2003) Oxidative stress and activation of proteasome protease during serum deprivation-induced apoptosis in rat hepatoma cells; inhibition of cell death by melatonin. Apoptosis 8:497–508

    Article  PubMed  CAS  Google Scholar 

  42. Löfgren S, Fernando MR, Xing KY, Wang Y, Kuszynski CA, Ho YS, Lou MF (2008) Effect of thioltransferase (glutaredoxin) deletion on cellular sensitivity to oxidative stress and cell proliferation in lens epithelial cells of thioltransferase knockout mouse. Invest Ophthalmol Vis Sci 49:4497–4505

    Article  PubMed  Google Scholar 

  43. Nagy N, Malik G, Tosaki A, Ho YS, Maulik N, Das DK (2008) Overexpression of glutaredoxin-2 reduces myocardial cell death by preventing both apoptosis and necrosis. J Mol Cell Cardiol 44:252–260

    Article  PubMed  CAS  Google Scholar 

  44. Enoksson M, Fernandes AP, Prast S, Lillig CH, Holmgren A, Orrenius S (2005) Overexpression of glutaredoxin 2 attenuates apoptosis by preventing cytochrome c release. Biochem Biophys Res Commun 327:774–779

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0072536).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jin Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, SJ., Jung, HJ., Choi, H. et al. Glutaredoxin 2a, a mitochondrial isoform, plays a protective role in a human cell line under serum deprivation. Mol Biol Rep 39, 3755–3765 (2012). https://doi.org/10.1007/s11033-011-1152-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-1152-0

Keywords

Navigation