Skip to main content


Log in

Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript


Semi-quantitative RT-PCR based transcript expression of stress responsive genes was studied in leaves of sugarcane plants exposed to short-term (up to 24 h) salt (NaCl, 200 mM) or polyethylene glycol-PEG 8000 (20% w/v) stress. Transient increase in expression of NHX (sodium proton antiporter), SUT1 (sucrose transporter1), PDH (proline dhydrogenase) and CAT2 (catalase2) was observed in response to 2–4 h PEG stress. However, salt stress imposed repression of NHX, PDH and CAT2 at these time points. The transcript level of the delta 1-pyrolline-5-carboxylate synthetase (P5CS) increased slightly in salt treatment while in response to the PEG stress, the gene expression increased at 4 h treatment but then decreased considerably by 80% at 24 h. The results thus indicated differential regulation of these stress responsive genes in response to salt or PEG stress in sugarcane. Further, the transcript expression data was compared with that available for the Arabidopsis homologs at Arabidopsis eFP Browser and Genevestigator V3 tools. Understanding transcript gene expression patterns of the stress responsive genes may provide insights into complex regulatory network of stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, ayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  PubMed  CAS  Google Scholar 

  2. Gao WR, Wang XS, Liu QY, Peng H, Chen C, Li JG, Zhang JS, Hu SN, Ma H (2008) Comparative analysis of ESTs in response to drought stress in chickpea C. arietinum L. Biochem Biophys Res Commun 37:578–583

    Article  Google Scholar 

  3. Molina C, Rotter B, Horres R, Udupa SM, Besser B, Bellarmino L, Baum M, Matsumura H, Terauchi R, Kahl G, Winter P (2008) SuperSAGE: the drought stress-responsive transcriptome of chickpea roots. BMC Genomics 9:553. doi:10.1186/1471-2164-9-553

    Article  PubMed  Google Scholar 

  4. Hazen SP, Wu Y, Kreps JA (2003) Gene expression profiling of plant responses to abiotic stress. Funct Integr Genom 33:105–111

    Article  Google Scholar 

  5. Vettore AL, da Silva FR, Kemper EL, Arruda P (2001) The libraries that made SUCEST. Genet Mol Biol 24:1–7

    Article  CAS  Google Scholar 

  6. Rodrigues FA, de Laia ML, Zingaretti SM (2009) Analysis of gene expression profiles under water stress in tolerant and sensitive sugarcane plants. Plant Sci 17:286–302

    Article  Google Scholar 

  7. Menossi MC, Siva-Filho M, Vincentz MA, Van-Sluys GM (2008) Sugarcane functional genomics: gene discovery for agronomic trait development. Int J Plant Genom 2008:1–11. doi:10.1155/2008/458732

  8. Patade VY, Suprasanna P, Bapat VA (2008) Effects of salt stress in relation to osmotic adjustment on sugarcane Saccharum officinarum L. callus cultures. Plant Growth Regul 55:169–173

    Article  CAS  Google Scholar 

  9. Patade VY, Penna Suprasanna (2009) An in vitro radiation induced mutagenesis-selection system for salinity tolerance in sugarcane. Sugar Tech 113:246–251

    Article  Google Scholar 

  10. Patade VY, Sujata Bhargava, Penna Suprasanna (2009) Halopriming imparts tolerance in sensitive sugarcane cultivar to salt and PEG induced drought stress. Agri Eco Environ 134:24–28

    Article  CAS  Google Scholar 

  11. Patade VY, Bhargava S, Suprasanna P (2011) Salt and drought tolerance of sugarcane under iso-osmotic salt and water stress. J Plant Interact. doi:10.1080/17429145.2011

  12. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologists programmers. In: Krawetzs S, Misener S (eds) Bioinformatics methods and protocols: Methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386

    Google Scholar 

  13. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  14. Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “Electronic Fluorescent Pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS ONE 2(8):e718. doi:10.1371/journal.pone.0000718

    Article  PubMed  Google Scholar 

  15. Hruz T, Laule O, Szabo G, Wessendrop F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator V3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinform. doi:10.1155/2008/420747

  16. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth PR, Tao Y, Xie Z, Chen X, Lam S, Kreps JA, Harper JF, Si-Ammour A, Mauch-Mani B, Heinlein M, Kobayashi K, Hohn T, Dangl JL, Wang X, Zhu T (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  PubMed  CAS  Google Scholar 

  17. Knight H, Knight MR (2001) Abiotic stress signaling pathways: specificity and crosstalk. Trends Plant Sci 6:262–267

    Article  PubMed  CAS  Google Scholar 

  18. Gaxiola RA, Li J, Unurraga S, Dang LM, Allen GJ, Alper SL, Fink GR (2001) Drought- and salt-tolerant plants result from over expression of the AVP1 H+-pump. Proc Natl Acad Sci 98:11444–11449

    Article  PubMed  CAS  Google Scholar 

  19. Li HT, Liu H, Gao XS, Zhang H (2009) Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress. Biochem Biophys Res Commun 382(3):637–641

    Article  PubMed  CAS  Google Scholar 

  20. Casu RE, Grof CPL, Rae AL, McIntyre CL, Dimmock CM, Manners JM (2003) Identification of a novel sugar transporter homologue strongly expressed in maturing stem vascular tissues of sugarcane by expressed sequence tag and microarray analysis. Plant Mol Biol 52:371–386

    Article  PubMed  CAS  Google Scholar 

  21. Watt DA, McCormick AJ, Govender C, Carson DL, Cramer MD, Huckett BI, Botha FC (2005) Increasing the utility of genomics in unraveling sucrose accumulation. Field Crops Res 92:49–158

    Article  Google Scholar 

  22. Weber H, Borisjuk L, Heim U, Sauer N, Wobus U (1997) A role for sucrose transporters during seed development: molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell 9:895–908

    Article  PubMed  CAS  Google Scholar 

  23. Noiraud N, Delrot S, Lemoine R (2000) The sucrose transporter of celery. Identification and expression during salt stress. Plant Physiol 122:1447–1455

    Article  PubMed  CAS  Google Scholar 

  24. Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is up regulated by proline but down regulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335

    Article  PubMed  CAS  Google Scholar 

  25. Igarashi Y, Yoshiba Y, Sanada Y, Yamaguchi-Shinozaki K, Wada K, Shinozaki K (1997) Characterization of the gene for Δ1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa. Plant Mol Biol 33:857–865

    Article  PubMed  CAS  Google Scholar 

  26. Alexandra R, Alisher A, Alisher T, Andreas R, Erwin GB, Alisher T (2007) Two tobacco proline dehydrogenases are differentially regulated and play a role in early plant development. Planta 225:1313–1324

    Article  Google Scholar 

  27. Silva-Ortega CO, Ochoa-Alfaro AE, Reyes-Agüero JA, Aguado-Santacruz GA, Jiménez-Bremont JF (2008) P5CS gene expression Salt stress increases the expression of p5cs gene and induces proline accumulation in cactus pear. Plant Physiol Biochem 461:82–92

    Article  Google Scholar 

  28. Nakashima K, Satoh R, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K (1998) A gene encoding proline dehydrogenase is not only induced by proline and hypoosmolarity, but is also developmentally regulated in the reproductive organs of Arabidopsis. Plant Physiol 118:1233–1241

    Article  PubMed  CAS  Google Scholar 

  29. Hong Z, Lakkineni K, Zhang Z, Verma DPS (2000) Removal of feedback inhibition of delta-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    Article  PubMed  CAS  Google Scholar 

  30. Molinari HBC, Marur CJ, Daros E, de Campos MKP, de Carvalho JFRP, Filho JCB, Pereira LFP, Vieira LGE (2008) Evaluation of the stress-inducible production of proline in transgenic sugarcane Saccharum spp.: osmotic adjustment, chlorophyll fluorescence and oxidative stress. Physiol Plant 130:218–229

    Article  Google Scholar 

  31. Roxas VP, Smith RK, Allen ER, Allen RD (1997) Over expression of glutathione S-transferase/glutathione peroxidase enhances the growth of transgenic tobacco plants during stress. Nat Biotech 15:988–991

    Article  CAS  Google Scholar 

  32. Du YY, Wang PC, Chen J, Song CP (2008) Comprehensive functional analysis of the catalase gene family in Arabidopsis thaliana. J Integr Plant Biol 50(10):1318–1326

    Article  PubMed  CAS  Google Scholar 

  33. Xing Y, Jia W, Zhang J (2007) AtMEK1 mediates stress-induced gene expression of CAT1 catalase by triggering H2O2 production in Arabidopsis. J Exp Bot 58:2969–2981

    Article  PubMed  CAS  Google Scholar 

  34. Ye N, Zhu G, Liu Y, Li Y, Zhang J (2011) ABA controls H2O2 accumulation through the induction of OsCATB in rice leaves under water stress. Plant Cell Physiol 52(4):689–698

    Article  PubMed  CAS  Google Scholar 

  35. Polidoros AN, Mylona PV, Scandalios JG (2001) Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. Transgenic Res 10:555–569

    Article  PubMed  CAS  Google Scholar 

Download references


The senior author thanks University Grant Commission, New Delhi, and Department of Botany, Pune University, Pune, India for award of UGC research fellowship.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Penna Suprasanna.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 932 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patade, V.Y., Bhargava, S. & Suprasanna, P. Transcript expression profiling of stress responsive genes in response to short-term salt or PEG stress in sugarcane leaves. Mol Biol Rep 39, 3311–3318 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: