Advertisement

Molecular Biology Reports

, Volume 39, Issue 3, pp 3001–3007 | Cite as

N-acetyl cysteine suppresses the foam cell formation that is induced by oxidized low density lipoprotein via regulation of gene expression

  • Ho Joong Sung
  • Jeonghan Kim
  • Yoonseo Kim
  • Sung-Wuk Jang
  • Jesang Ko
Article

Abstract

Foam cells derived from macrophages have been implicated as markers of early stage atherosclerosis development. In this study, we found that N-acetyl cysteine (NAC), a well-known inhibitor of reactive oxygen species (ROS), decreased the generation of ROS and suppressed foam cell formation in the presence of oxidized low density lipoprotein through down-regulation of cluster of differentiation 36 expression. We investigated gene expression profiles in order to determine the effects of NAC on foam cell formation using a microarray analysis. The level of apolipoprotein E, which is involved in lipid efflux, was increased and the levels of the antioxidant genes glutathione peroxidase 1 and 3 were also increased. The expression levels of the oxidative stress response and the DNA repair genes were decreased. These results were confirmed using quantitative real-time PCR. Our results indicate that oxidative stress plays an important role in foam cell formation, and that regulation of oxidation using antioxidants is a potential therapeutic method for blocking atherosclerosis development.

Keywords

Atherosclerosis Foam cell Reactive oxygen species N-acetyl cysteine 

Notes

Acknowledgments

This work was supported by the Intramural Research Grants Program (2011) from the Eulji University and the Disease Network Research Program (No. 2010-0020615) from the National Research Foundation of Korea (NRF) grant, funded by the Ministry of Education, Science and Technology (MEST), Republic of Korea.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Tousoulis D, Davies G, Stefanadis C, Toutouzas P, Ambrose JA (2003) Inflammatory and thrombotic mechanisms in coronary atherosclerosis. Heart 89:993–997PubMedCrossRefGoogle Scholar
  2. 2.
    Ross R (1999) Atherosclerosis: an inflammatory disease. N Engl J Med 340:115–126PubMedCrossRefGoogle Scholar
  3. 3.
    Vorchheimer DA, Fuster V (2001) Inflammatory markers in coronary artery disease. JAMA 286:2154–2156PubMedCrossRefGoogle Scholar
  4. 4.
    Elgharib N, Chi DS, Younis W, Wehbe S, Krishnaswamy G (2001) C-reactive protein as a novel biomarkers. Postgrad Med 114:39–44Google Scholar
  5. 5.
    Tsai J, Su K, Shyue S, Kou YR, Yu Y, Hsiao S, Chiang A, Wu Y, Ching L, Lee T (2010) EGb761 ameliorates the formation of foam cells by regulating the expression of SR-A and ABCA1: role of haem oxygenase-1. Cardiovasc Res 83:415–423CrossRefGoogle Scholar
  6. 6.
    Madamanchi NR, Vendrov A, Runge MS (2005) Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25:29–38PubMedCrossRefGoogle Scholar
  7. 7.
    Aviram M (1999) Macrophage foam cell formation during early atherogenesis is determined by the balance between pro-oxidants and anti-oxidants in arterial cells and blood lipoproteins. Antioxid Redox Signal 1:585–594PubMedCrossRefGoogle Scholar
  8. 8.
    Patterson C, Ruef J, Madamanchi NR, Barry-Lane P, Hu Z, Horaist C, Ballinger CA, Brasier AR, Bode C, Runge MS (1999) Stimulation of a vascular smooth muscle cell NAD(P)H oxidase by thrombin. J Biol Chem 274:19814–19822PubMedCrossRefGoogle Scholar
  9. 9.
    Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95PubMedGoogle Scholar
  10. 10.
    Ohara Y, Peterson TE, Harrison DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91:2546–2551PubMedCrossRefGoogle Scholar
  11. 11.
    Boveris A, Cadenas E, Stoppani AO (1976) Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem J 156:435–444PubMedGoogle Scholar
  12. 12.
    Bjorkhem I, Henriksson-Freyschuss A, Breuer O, Diczfalusy U, Berglund L, Henriksson P (1991) The antioxidant butylated hydroxytoluene protects against atherosclerosis. Arterioscler Thromb Vasc Biol 11:15–22CrossRefGoogle Scholar
  13. 13.
    Wu Y, Hong C, Lin S, Wu P, Shiao M (1998) Increase of vitamin E content in LDL and reduction of atherosclerosis in cholesterol-fed rabbits by a water-soluble antioxidant-rich fraction of Salvia miltiorrhiza. Arterioscler Thromb Vasc Biol 18:481–486PubMedCrossRefGoogle Scholar
  14. 14.
    Azen SP, Qian D, Mack WJ, Sevanian A, Selzer RH, Liu C, Liu C, Hodis HN (1996) Effect of supplementary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation 94:2369–2372PubMedGoogle Scholar
  15. 15.
    Stephens NG, Parsons A, Brown MJ, Schofield PM, Kelly F, Cheeseman K, Mitchinson M (1996) Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 347:781–786PubMedCrossRefGoogle Scholar
  16. 16.
    Jialal I, Devaraj S (2003) Antioxidants and atherosclerosis. Circulation 107:926–928PubMedCrossRefGoogle Scholar
  17. 17.
    Kao E, Tseng T, Lee H, Chan K, Wang C (2009) Anthocyanin extracted from Hibiscus attenuate oxidized LDL-mediated foam cell formation involving regulation of CD36 gene. Chem Biol Interact 179:212–218PubMedCrossRefGoogle Scholar
  18. 18.
    Ricciarelli R, Zingg J, Azzi A (2000) Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation 102:82–87PubMedGoogle Scholar
  19. 19.
    Rajagopalan S, Meng XP, Ramasamy S, Harrison DG, Galis ZS (1996) Reactive oxygen species produced by macrophage-derived foam cells regulate the activity of vascular matrix metalloproteinases in vitro. J Clin Invest 98:2572–2579PubMedCrossRefGoogle Scholar
  20. 20.
    Sung HJ, Ma W, Wang P, Hynes J, O’Riordan TC, Combs CA, McCoy JP, Bunz F, Kang J, Hwang PM (2010) Mitochondrial respiration protects against oxygen-associated DNA damage. Nat Commun 1:5PubMedCrossRefGoogle Scholar
  21. 21.
    Sprong RC, Winkelhuyzen-Janssen AML, Aarsman CJM, van Oirschot JFLM, van der Bruggen T, van Asbeck BS (1998) Low-dose N-acetylcysteine protects rats against endotoxin-mediated oxidative stress, but high-dose increases mortality. Am J Respir Crit Care Med 157:1283–1293PubMedGoogle Scholar
  22. 22.
    Park D, Baek K, Kim J, Lee J, Ryu S, Chin B, Baek S (2009) Resveratrol inhibits foam cell formation via NADPH oxidase 1-mediated reactive oxygen species and monocyte chemotactic protein-1. Exp Mol Med 41:171–179PubMedCrossRefGoogle Scholar
  23. 23.
    Halliwell B (1991) Reactive oxygen species in living systems: source, biochemistry, and role in human disease. Am J Med 91:S14–S22CrossRefGoogle Scholar
  24. 24.
    Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91:7A–11APubMedCrossRefGoogle Scholar
  25. 25.
    Aruoma OI, Halliwell B, Hoey BM, Butler J (1989) The antioxidant action of N-acetylcysteine: with hydrogen peroxide, hydroxyl radical, and hypochlorous acid. Free Radic Biol Med 6:593–597PubMedCrossRefGoogle Scholar
  26. 26.
    Curtiss LK (2000) ApoE in atherosclerosis. Arterioscler Thromb Vasc Biol 20:1852–1853PubMedCrossRefGoogle Scholar
  27. 27.
    Lee YS, Kim AY, Choi JW, Kim M, Yasue S, Son HJ, Masuzaki H, Park KS, Kim JB (2008) Dysregulation of adipose glutathione peroxidase 3 in obesity contributes to local and systemic oxidative stress. Mol Endorinol 22:2176–2189CrossRefGoogle Scholar
  28. 28.
    Yagci G, Gul H, Simsek A, Buyukdogan V, Onguru O, Zeybek N, Aydin A, Balkan M, Yildiz O, Sen D (2004) Beneficial effects of N-acetylcysteine on sodium taurocholate-induced pancreatitis in rats. J Gastroenterol 39:268–276PubMedCrossRefGoogle Scholar
  29. 29.
    Lewis P, Stefanovic N, Pete J, Calkin AC, Giunti S, Thallas-Bonke V, Jandeleit-Dahm KA, Allen TJ, Kola I, Cooper ME, de Haan JB (2007) Lack of the antioxidant enzyme glutathione peroxidase-1 accelerates atherosclerosis in diabetic apolipoprotein E-deficient mice. Circulation 115:2178–2187PubMedCrossRefGoogle Scholar
  30. 30.
    Adams SH (2002) Uncoupling protein homologs: emerging views of physiological function. J Nutr 130:711–714Google Scholar
  31. 31.
    Brand MD, Esteves TC (2005) Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2:85–93PubMedCrossRefGoogle Scholar
  32. 32.
    Wong WR, Stephens JW, Acharya J, Hurel SJ, Humphries SE, Talmud PJ (2004) The APOA4 T347S variant is associated with reduced plasma TAOS in subjects with diabetes mellitus and cardiovascular disease. J Lipid Res 45:1565–1571PubMedCrossRefGoogle Scholar
  33. 33.
    Sasaki T, Nakajima H (1992) Serum adenosine deaminase activity in systemic sclerosis (scleroderma) and related disorders. J Am Acad Dermatol 27:411–414PubMedCrossRefGoogle Scholar
  34. 34.
    Kose K, Yazici C, Ascioglu O (2001) The evaluation of lipid peroxidation and adenosine deaminase activity in patients with Behcet’s disease. Clin Chem 34:125–129Google Scholar
  35. 35.
    De Bona KS, Bellé LP, Sari MH, Thomé G, Schetinger MRC, Morsch VM, Boligon A, Athayde ML, Pigatto AS, Moretto MB (2010) Syzygium cumini extract decrease adenosine deaminase, 5′nucleotidase activities and oxidative damage in platelets of diabetic patients. Cell Physiol Biochem 26:729–738PubMedCrossRefGoogle Scholar
  36. 36.
    Radtke F, Heuchel R, Georgiev O, Hergersberg M, Gariglio M, Dembic Z, Schaffner W (1993) Cloned transcription factor MTF-1 activates the mouse metallothionein I promoter. EMBO J 12:1355–1362PubMedGoogle Scholar
  37. 37.
    Bahadorania S, Mukaia S, Eglib D, Hillikera AJ (2010) Overexpression of metal-responsive transcription factor (MTF-1) in Drosophila melanogaster ameliorates life-span reductions associated with oxidative stress and metal toxicity. Neurobiol Aging 31:1215–1226CrossRefGoogle Scholar
  38. 38.
    Pan P, Fu H, Zhang L, Huang H, Luo F, Wu W, Guo Y, Liu X (2010) Angiotensin II upregulates the expression of placental growth factor in human vascular endothelial cells and smooth muscle cells. BMC Cell Biol 11:36PubMedCrossRefGoogle Scholar
  39. 39.
    Ismail M, Al-Naqeeb G, Mamat WAA, Ahmad Z (2010) Gamma-oryzanol rich fraction regulates the expression of antioxidant and oxidative stress related genes in stressed rat’s liver. Nutr Metab 7:23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Ho Joong Sung
    • 1
  • Jeonghan Kim
    • 2
  • Yoonseo Kim
    • 2
  • Sung-Wuk Jang
    • 2
  • Jesang Ko
    • 2
  1. 1.Department of Biomedical Laboratory Science, College of Health ScienceEulji UniversitySeongnamSouth Korea
  2. 2.School of Life Sciences and BiotechnologyKorea UniversitySeoulSouth Korea

Personalised recommendations