Skip to main content
Log in

Characteristics and evolution of the PUF gene family in Bombyx mori and 27 other species

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The Pumilio protein is the founding member of the PUF family of RNA-binding proteins, which contains 8 repeat Puf domains and plays important roles during embryogenesis and post-embryogenesis by binding the Nanos response element (NRE) of specific target genes in eukaryotes. In addition, many other proteins containing the Puf domain were identified but with different functions from the Pumilio protein in various species. Taking advantage of the newly assembled genome sequences, in this study we performed a genome-wide analysis of PUF genes in silkworm and other 27 species. In the silkworm, three PUF genes were identified, named Bmpumilio, Bmpenguin and Bmnop by homology analysis. In fungi and animals, four evolutionarily conservational PUF gene families were identified, Group-A, -B, -C and -D. While Group-A, -C, and -D are present in all fungi and animals, Group-B was only identified in fungi. Interestingly, the number and features of the Puf domains are distinct in each group, suggesting different roles for these proteins in every group. The EST and microarray data showed that the mRNA of the three PUF genes can be widely detected in all tissues of the silkworm. Our results provide some new insights into the functions and evolutionary characteristics of PUF proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Wharton RP, Aggarwal AK (2006) mRNA regulation by Puf domain proteins. Sci STKE 2006(354):pe37

  2. Wickens M, Bernstein DS, Kimble J, Parker R (2002) A PUF family portrait: 3′ UTR regulation as a way of life. Trends Genet 18(3):150–157

    Article  PubMed  CAS  Google Scholar 

  3. Murata Y, Wharton RP (1995) Binding of pumilio to maternal hunchback mRNA is required for posterior patterning in Drosophila embryos. Cell 80(5):747–756

    Article  PubMed  CAS  Google Scholar 

  4. Bernstein D, Hook B, Hajarnavis A, Opperman L, Wickens M (2005) Binding specificity and mRNA targets of a C elegans PUF protein, FBF-1. RNA 11(4):447–458

    Article  PubMed  CAS  Google Scholar 

  5. Gerber AP, Herschlag D, Brown PO (2004) Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2(3):E79

    Article  PubMed  Google Scholar 

  6. Gerber AP, Luschnig S, Krasnow MA, Brown PO, Herschlag D (2006) Genome-wide identification of mRNAs associated with the translational regulator PUMILIO in Drosophila melanogaster. Proc Natl Acad Sci USA 103(12):4487–4492

    Article  PubMed  CAS  Google Scholar 

  7. Morris AR, Mukherjee N, Keene JD (2008) Ribonomic analysis of human Pum1 reveals cis-trans conservation across species despite evolution of diverse mRNA target sets. Mol Cell Biol 28(12):4093–4103

    Article  PubMed  CAS  Google Scholar 

  8. Opperman L, Hook B, DeFino M, Bernstein DS, Wickens M (2005) A single spacer nucleotide determines the specificities of two mRNA regulatory proteins. Nat Struct Mol Biol 12(11):945–951

    PubMed  CAS  Google Scholar 

  9. Stumpf CR, Kimble J, Wickens M (2008) A Caenorhabditis elegans PUF protein family with distinct RNA binding specificity. RNA 14(8):1550–1557

    Article  PubMed  CAS  Google Scholar 

  10. Zhang B, Gallegos M, Puoti A, Durkin E, Fields S, Kimble J, Wickens MP (1997) A conserved RNA-binding protein that regulates sexual fates in the C. elegans hermaphrodite germ line. Nature 390(6659):477–484

    Article  PubMed  CAS  Google Scholar 

  11. Crittenden SL, Bernstein DS, Bachorik JL, Thompson BE, Gallegos M, Petcherski AG, Moulder G, Barstead R, Wickens M, Kimble J (2002) A conserved RNA-binding protein controls germline stem cells in Caenorhabditis elegans. Nature 417(6889):660–663

    Article  PubMed  CAS  Google Scholar 

  12. Bachorik JL, Kimble J (2005) Redundant control of the Caenorhabditis elegans sperm/oocyte switch by PUF-8 and FBF-1, two distinct PUF RNA-binding proteins. Proc Natl Acad Sci USA 102(31):10893–10897

    Article  PubMed  CAS  Google Scholar 

  13. Subramaniam K, Seydoux G (2003) Dedifferentiation of primary spermatocytes into germ cell tumors in C. elegans lacking the pumilio-like protein PUF-8. Curr Biol 13(2):134–139

    Article  PubMed  CAS  Google Scholar 

  14. Nolde MJ, Saka N, Reinert KL, Slack FJ (2007) The Caenorhabditis elegans pumilio homolog, puf-9, is required for the 3′UTR-mediated repression of the let-7 microRNA target gene, hbl-1. Dev Biol 305(2):551–563

    Article  PubMed  CAS  Google Scholar 

  15. Lublin AL, Evans TC (2007) The RNA-binding proteins PUF-5, PUF-6, and PUF-7 reveal multiple systems for maternal mRNA regulation during C. elegans oogenesis. Dev Biol 303(2):635–649

    Article  PubMed  CAS  Google Scholar 

  16. Sonnichsen B, Koski LB, Walsh A, Marschall P, Neumann B, Brehm M, Alleaume AM, Artelt J, Bettencourt P, Cassin E, Hewitson M, Holz C, Khan M, Lazik S, Martin C, Nitzsche B, Ruer M, Stamford J, Winzi M, Heinkel R, Roder M, Finell J, Hantsch H, Jones SJ, Jones M, Piano F, Gunsalus KC, Oegema K, Gonczy P, Coulson A, Hyman AA, Echeverri CJ (2005) Full-genome RNAi profiling of early embryogenesis in Caenorhabditis elegans. Nature 434(7032):462–469

    Article  PubMed  CAS  Google Scholar 

  17. Koh YY, Opperman L, Stumpf C, Mandan A, Keles S, Wickens M (2009) A single C. elegans PUF protein binds RNA in multiple modes. RNA 15(6):1090–1099

    Article  PubMed  CAS  Google Scholar 

  18. Ulbricht RJ, Olivas WM (2008) Puf1p acts in combination with other yeast Puf proteins to control mRNA stability. RNA 14(2):246–262

    Article  PubMed  CAS  Google Scholar 

  19. Hook BA, Goldstrohm AC, Seay DJ, Wickens M (2007) Two yeast PUF proteins negatively regulate a single mRNA. J Biol Chem 282(21):15430–15438

    Article  PubMed  CAS  Google Scholar 

  20. Stewart MS, Krause SA, McGhie J, Gray JV (2007) Mpt5p, a stress tolerance- and lifespan-promoting PUF protein in Saccharomyces cerevisiae, acts upstream of the cell wall integrity pathway. Eukaryot Cell 6(2):262–270

    Article  PubMed  CAS  Google Scholar 

  21. Houshmandi SS, Olivas WM (2005) Yeast Puf3 mutants reveal the complexity of Puf-RNA binding and identify a loop required for regulation of mRNA decay. RNA 11(11):1655–1666

    Article  PubMed  CAS  Google Scholar 

  22. Gu W, Deng Y, Zenklusen D, Singer RH (2004) A new yeast PUF family protein, Puf6p, represses ASH1 mRNA translation and is required for its localization. Genes Dev 18(12):1452–1465

    Article  PubMed  CAS  Google Scholar 

  23. Thomson E, Rappsilber J, Tollervey D (2007) Nop9 is an RNA binding protein present in pre-40S ribosomes and required for 18S rRNA synthesis in yeast. RNA 13(12):2165–2174

    Article  PubMed  CAS  Google Scholar 

  24. Kuo MW, Wang SH, Chang JC, Chang CH, Huang LJ, Lin HH, Yu AL, Li WH, Yu J (2009) A novel puf-A gene predicted from evolutionary analysis is involved in the development of eyes and primordial germ-cells. PLoS One 4(3):e4980

    Article  PubMed  Google Scholar 

  25. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14(9):755–763

    Article  PubMed  CAS  Google Scholar 

  26. Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer EL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34(Database issue):D247–D251

    Article  PubMed  CAS  Google Scholar 

  27. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  PubMed  CAS  Google Scholar 

  28. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  PubMed  CAS  Google Scholar 

  29. Xia Q, Cheng D, Duan J, Wang G, Cheng T, Zha X, Liu C, Zhao P, Dai F, Zhang Z, He N, Zhang L, Xiang Z (2007) Microarray-based gene expression profiles in multiple tissues of the domesticated silkworm, Bombyx mori. Genome Biol 8(8):R162

    Article  PubMed  Google Scholar 

  30. Birney E, Kumar S, Krainer AR (1993) Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 21(25):5803–5816

    Article  PubMed  CAS  Google Scholar 

  31. Zhao G, Chen K, Yao Q, Wang W, Wang Y, Mu R, Chen H, Yang H, Zhou H (2008) The nanos gene of Bombyx mori and its expression patterns in developmental embryos and larvae tissues. Gene Expr Patterns 8(4):254–260

    Article  PubMed  CAS  Google Scholar 

  32. Nakao H, Matsumoto T, Oba Y, Niimi T, Yaginuma T (2008) Germ cell specification and early embryonic patterning in Bombyx mori as revealed by nanos orthologues. Evol Dev 10(5):546–554

    Article  PubMed  CAS  Google Scholar 

  33. Forbes A, Lehmann R (1998) Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125(4):679–690

    PubMed  CAS  Google Scholar 

  34. Maleszka R, Hanes SD, Hackett RL, de Couet HG, Miklos GL (1996) The Drosophila melanogaster dodo (dod) gene, conserved in humans, is functionally interchangeable with the ESS1 cell division gene of Saccharomyces cerevisiae. Proc Natl Acad Sci USA 93(1):447–451

    Article  PubMed  CAS  Google Scholar 

  35. Prout M, Damania Z, Soong J, Fristrom D, Fristrom JW (1997) Autosomal mutations affecting adhesion between wing surfaces in Drosophila melanogaster. Genetics 146(1):275–285

    PubMed  CAS  Google Scholar 

  36. Lamont LB, Crittenden SL, Bernstein D, Wickens M, Kimble J (2004) FBF-1 and FBF-2 regulate the size of the mitotic region in the C. elegans germline. Dev Cell 7(5):697–707

    Article  PubMed  CAS  Google Scholar 

  37. Olivas W, Parker R (2000) The Puf3 protein is a transcript-specific regulator of mRNA degradation in yeast. EMBO J 19(23):6602–6611

    Article  PubMed  CAS  Google Scholar 

  38. Takizawa PA, Vale RD (2000) The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc Natl Acad Sci USA 97(10):5273–5278

    Article  PubMed  CAS  Google Scholar 

  39. Goldstrohm AC, Hook BA, Seay DJ, Wickens M (2006) PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol 13(6):533–539

    Article  PubMed  CAS  Google Scholar 

  40. Grigull J, Mnaimneh S, Pootoolal J, Robinson MD, Hughes TR (2004) Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Mol Cell Biol 24(12):5534–5547

    Article  PubMed  CAS  Google Scholar 

  41. Foat BC, Houshmandi SS, Olivas WM, Bussemaker HJ (2005) Profiling condition-specific, genome-wide regulation of mRNA stability in yeast. Proc Natl Acad Sci USA 102(49):17675–17680

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Hi-Tech Research and Development (863) Program of China (2006AA10A118), and the National Natural Science Foundation of China. (30972146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Lu.

Additional information

Chun-Dong Zhang, Min-Hui Pan contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, CD., Pan, MH., Tan, J. et al. Characteristics and evolution of the PUF gene family in Bombyx mori and 27 other species. Mol Biol Rep 39, 675–683 (2012). https://doi.org/10.1007/s11033-011-0785-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-011-0785-3

Keywords