Skip to main content

Advertisement

Log in

Impact of ERCC2 gene polymorphism on HIV-1 disease progression to AIDS among North Indian HIV patients

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

HIV/AIDS remains to be one of the killing diseases of mankind. Host genetic response is one of the factor which determine susceptibility to HIV and disease progression to AIDS. The aim of the present study was to evaluate the impact of ERCC2 Lyc 751 Gln (excision repair cross complementing rodent repair deficiency, complementation group 2) polymorphism on HIV-1 susceptibility and disease progression to AIDS, as this gene has been reported to intervene in degrading retroviral cDNA before it integrates with the host DNA. This case control study included 300 HIV seropositive cases and an equal number of HIV seronegative controls. DNA was isolated from the blood samples of study subjects and genotyping of ERCC2 was conducted by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) method. The Gln/Gln genotype showed a significant variation between cases and controls (P = 0.047, OR 1.71, 95% CI 1.00–2.93), indicating a possible role of susceptibility in reference to controls and disease progression when compared within cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Report on the global HIV/AIDS epidemic 2008: executive summary. UNAIDS/08.27E/JC1511E. Available at http://www.unaids.com. Accessed 2 Jan 2009

  2. Lama J, Planelles V (2007) Host factors influencing susceptibility to HIV infection and AIDS progression. Retrovirology 4:52

    Article  PubMed  Google Scholar 

  3. Roos ML, Lange JM, de Goede RE, Miedema PT, Tersmette F, Coutinho RA, Schellekens PT, Miedema F, Tersmette M (1992) Viral phenotype and immune response in primary human immunodeficiency virus type 1 infection. J Infect Dis 165:427–437

    Article  PubMed  CAS  Google Scholar 

  4. Kelleher AD, Zaunders JJ (2006) Decimated or missing in action: CD4+ T cells as targets and effectors in the pathogenesis of primary HIV infection. Sci HIV Med 3:5–12

    Google Scholar 

  5. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 273:1856–1862

    Article  PubMed  CAS  Google Scholar 

  6. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377

    Article  PubMed  CAS  Google Scholar 

  7. Huang Y, Huang Y, Paxton WA, Wolinsky SM, Neumann AU, Zhang L, He T, Kang S, Ceradini D, Jin Z, Yazdanbakhsh K, Kunstman K, Erickson D, Dragon E, Landau NR, Phair J, Ho DD, Koup RA (1996) The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 2:1240–1243

    Article  PubMed  CAS  Google Scholar 

  8. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    Article  PubMed  CAS  Google Scholar 

  9. De Roda Husman AM, Koot M, Cornelissen M, Keet IP, Brouwer M, Broersen SM, Bakker M, Roos MT, Prins M, de Wolf F, Coutinho RA, Miedema F, Goudsmit J, Schuitemaker H (1997) Association of CCR5 genotype and clinical course of HIV-1 infection. Ann Intern Med 127:882–890

    PubMed  Google Scholar 

  10. Garred P, Eugen-Olsen J, Iversen AN, Benfield TL, Svejgaard A, Hofmann B (1997) Dual effect of CCR5 delta 32 gene deletion in HIV-1-infected patients. Copenhagen AIDS Study Group. Lancet 349:1884

    Article  PubMed  CAS  Google Scholar 

  11. Katzenstein TL, Eugen-Olse J, Hofman B, Benfield T, Pedersen C, Iversen AK, Sørensen AM, Garred P, Koppelhus U, Svejgaard A, Gerstoft J (1997) HIV-infected individuals with the CCR delta32/CCR5 genotype have lower HIV RNA levels and higher CD4 cell counts in the early years of the infection than do patients with the wild type. Copenhagen AIDS Cohort Study Group. J Acquir Immune Defic Syndr Hum Retrovirol 16:10–14

    Article  PubMed  CAS  Google Scholar 

  12. McNicholl JM, Smith DK, Qari SH, Hodge T (1997) Host genes and HIV: the role of the chemokine receptor gene CCR5 and its allele (Delta32 CCR5). Emerg Infect Dis 3:261–271

    Article  PubMed  CAS  Google Scholar 

  13. Meyer L, Magierowska M, Hubert JB, Rouzioux C, Deveau C, Sanson F, Debre P, Delfraissy JF, Theodorou I (1997) Early protective effect of CCR-5 delta 32 heterozygosity on HIV-1 disease progression: relationship with viral load. The SEROCO Study Group. AIDS 11:F73–F78

    Article  PubMed  CAS  Google Scholar 

  14. Michael N, Chan G, Louie L, Mascola J, Dondero D, Birx D, Sheppard H (1997) The role of viral phenotype and CCR-5 gene defects in HIV-1 transmission and disease progression. Nat Med 3:338–340

    Article  PubMed  CAS  Google Scholar 

  15. Smith MW, Dean M, Carrington M, Winkler C, Huttley GA, Lomb DA, Goedert JJ, O’Brien TR, Jacobson LP, Kaslow R, Buchbinder S, Vittinghoff E, Vlahov D, Hoots K, Hilgartner MW, O’Brien SJ (1997) Contrasting genetic influence of CCR2 and CCR5 variants on HIV-1 infection and disease progression. Science 277:959–965

    Article  PubMed  CAS  Google Scholar 

  16. Sullivan AD, Wigginton J, Kirschner D (2001) The coreceptor mutation CCR5∆32 influences the dynamics of HIV epidemics and is selected for by HIV. PNAS 98:10214–10219

    Article  PubMed  CAS  Google Scholar 

  17. Banerjee M, Sarkar J, Das JK, Mukherjee A, Sarkar AK, Mondal L, Giri AK (2007) Polymorphism in the ERCC2 codon 751 is associated with arsenic-induced premalignant hyperkeratosis and significant chromosome aberrations. Carcinogenesis 28:672–676

    Article  PubMed  CAS  Google Scholar 

  18. Yoder K, Alain S, Kenneth K, Michael M, Frederic B, Richard F (2006) The DNA repair genes XPB and XPD defend cells from retroviral infection. PNAS 103:4622–4627

    Article  PubMed  CAS  Google Scholar 

  19. Anja J, Brabant V, Stan R, Eliss NA (2000) DNA helicases, genomic stability, and human genetic disease. Genomics Hum Genet 1:409–459

    Article  Google Scholar 

  20. Shen MR, Jones IM, Mohrenweiser H (1998) Non-conservative amino acid substitution variants exist at polymorphic frequency in DNA repair genes in healthy humans. Cancer Res 58:604–608

    PubMed  CAS  Google Scholar 

  21. Justenhoven C, Hamann U, Pesch B, Harth V, Rabstein S, Baisch C, Vollmert C, Illig T, Ko YD, Thomas T, Brauch H (2004) ERCC2 genotypes and a corresponding haplotype are linked with breast cancer risk in a german population. Cancer Epidemiol Biomarkers Prev 13:2059–2064

    PubMed  CAS  Google Scholar 

  22. Kirk GD, Turner PC, Gong Y, Lesi OA, Mendy M, Goedert JJ, Hall AJ, Whittle H, Hainaut P, Montesano R, Wild WP (2005) Hepatocellular carcinoma and polymorphisms in carcinogen-metabolizing and DNA repair enzymes in a population with aflatoxin exposure and hepatitis B virus endemicity. Cancer Epidemiol Biomarkers Prev 14:373–379

    Article  PubMed  CAS  Google Scholar 

  23. Haynes BF, Pantaleo G, Fauci AS (1996) Toward an understanding of the correlates of protective immunity to HIV infection. Science 271:324–328

    Article  PubMed  CAS  Google Scholar 

  24. Chakraborty R, Morel AS, Sutton JK, Appay V, Ripley RM, Dong T, Rostron T, Ogola S, Palakudy T, Musoke R, D’Agostino A, Ritter M, Rowland-Jones SL (2005) Correlates of delayed disease progression in HIV-1-infected kenyan children. J Immunol 174:8191–8199

    PubMed  CAS  Google Scholar 

  25. Evans DL, Leserman J, Perkins DO, Stern RA, Murphy C, Zheng B, Gettes D, Longmate JA, Silva SG, van der Horst CM, Hal CD, Folds JD, Golden RN, Petitto JM (1997) Severe life stress as a predictor of early disease progression in HIV infection. Am J Psychiatry 154:630–634

    PubMed  CAS  Google Scholar 

  26. Julg B, Goebel FD (2005) Susceptibility to HIV/AIDS: an individual characteristic we can measure. Infection 33:160–162

    Article  PubMed  CAS  Google Scholar 

  27. Langford SE, Ananworanich J, Cooper DA (2007) Predictors of disease progression in HIV infection. AIDS Res Ther 4:11–25

    Article  PubMed  Google Scholar 

  28. Lunn RM, Helzlsouer KJ, Parshad R, Umbach DM, Harris EL, Sanford KK, Bell DA (2000) XPD polymorphisms: effects on DNA repair proficiency. Carcinogenesis 21:551–555

    Article  PubMed  CAS  Google Scholar 

  29. Tomescu D, Kavanagh G, Ha T, Campbell H, Melton DW (2001) Nucleotide excision repair gene XPD polymorphisms and genetic predisposition to melanoma. Carcinogenesis 22:403–408

    Article  PubMed  CAS  Google Scholar 

  30. Rybicki BA, Conti DV, Moreira A, Cicek M, Casey G, Witte JS (2004) DNA repair gene XRCC1 and XPD polymorphisms and risk of prostate cancer. Cancer Epidemiol Biomarkers Prev 13:23–29

    Article  PubMed  CAS  Google Scholar 

  31. Stern MC, Johnson LR, Bell DA, Taylor JA (2002) XPD codon 751 polymorphism, metabolism genes, smoking, and bladder cancer risk. Cancer Epidemiol Biomarkers Prev 11:1004–1011

    PubMed  CAS  Google Scholar 

  32. Liu G, Zhou W, Yeap BY, Su L, Wain JC, Poneros JM, Nishioka NS, Lynch TJ, Christiani DC (2007) XRCC1 and XPD polymorphisms and esophageal adenocarcinoma risk. Carcinogenesis 28:1254–1255

    Article  PubMed  Google Scholar 

  33. Choudhury A, Elliott F, Iles M, Churchman M, Bristow RG, Bishop DT, Kiltie AE (2008) Analysis of variants in DNA damage signaling genes in bladder cancer. BMC Med Genet 9:69

    Article  PubMed  Google Scholar 

  34. Shi Q, Wang LE, Bondy ML, Brewster A, Singletary SE, Wei Q (2004) Reduced DNA repair of benzo [a] pyrene diol epoxide-induced adducts and common XPD polymorphisms in breast cancer patients. Carcinogenesis 25:1695–1700

    Article  PubMed  CAS  Google Scholar 

  35. Tang D, Cho S, Rundle A, Chen S, Phillips D, Zhou J, Hsu Y, Schnabel F, Estabrook A, Perera FP (2002) Polymorphisms in the DNA repair enzyme XPD are associated with increased levels of PAH-DNA adducts in a case-control study of breast cancer. Breast Cancer Res Treat 75:159–166

    Article  PubMed  CAS  Google Scholar 

  36. David-Beabes GL, Lunn RM, London SJ (2001) No association between the XPD (Lys751G1n) polymorphism or the XRCC3 (Thr241Met) polymorphism and lung cancer risk. Cancer Epidemiol Biomarkers Prev 10:911–912

    PubMed  CAS  Google Scholar 

  37. Romanowicz-Makowska H, Sobczuk A, Smolarz B, Fiks T, Kulig A (2007) XPD Lys751Gln polymorphism analysis in women with sporadic breast cancer. Pol J Pathol 58:245–249

    PubMed  CAS  Google Scholar 

  38. Spitz MR, Wu X, Wang Y, Wang L, Shete S, Amos CI, Guo Z, Lei L (2001) Modulation of nucleotide excision repair capacity by XPD polymorphisms in lung cancer patients. Cancer Res 61:1354–1357

    PubMed  CAS  Google Scholar 

  39. Robles AI, Wang XW, Harris CC (1999) Drug-induced apoptosis is delayed and reduced in XPD lymphoblastoid cell lines: possible role of TFIIH in p53-mediated apoptotic cell death. Oncogene 18:4681–4688

    Article  PubMed  CAS  Google Scholar 

  40. Hoeijmakers JH, Bootsma D (1990) Molecular genetics of eukaryotic DNA excision repair. Cancer Cells 2:311–332

    PubMed  CAS  Google Scholar 

  41. Wang XW, Vermeulen W, Coursen JD, Gibson M, Lupold SE, Forrester K, Xu G, Elmore L, Yeh H, Hoeijmakers HJ (1996) The XPB and XPD DNA helicases are components of the p53-mediated apoptosis pathway. Genes Dev 10:1219–1232

    Article  PubMed  CAS  Google Scholar 

  42. Benhamou S, Sarasin A (2002) ERCC2/XPD gene polymorphisms and cancer risk. Mutagenesis 17:463–469

    Article  PubMed  CAS  Google Scholar 

  43. Taganov K, Daniel R, Katz RA, Favorova O, Skalka AR (2001) Characterization of retrovirus-host DNA junctions in cells deficient in nonhomologous-end joining. J Virol 75:9549–9552

    Article  PubMed  CAS  Google Scholar 

  44. Skalka AM, Katz RA (2005) Retroviral DNA integration and the DNA damage response. Cell Death Differ 12:971–978

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors of this paper would like to appreciate Dr. Ajay Wanchu’s clinical staff for the kind help and assistance they have provided during sample collection and data recording.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranbir Chander Sobti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sobti, R.C., Berhane, N., Mahdi, S.A. et al. Impact of ERCC2 gene polymorphism on HIV-1 disease progression to AIDS among North Indian HIV patients. Mol Biol Rep 38, 2945–2952 (2011). https://doi.org/10.1007/s11033-010-9958-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-9958-8

Keywords

Navigation