Skip to main content
Log in

Evaluation of binding and thermodynamic characteristics of interactions between a citrus flavonoid hesperitin with protein and effects of metal ions on binding

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The mechanism of interaction of a non-glycosidic citrus flavonoid, hesperitin (HES) with bovine serum albumin (BSA) was studied by UV–vis absorption, fluorescence, FT-IR, circular dichroism, fluorescence anisotropy and synchronous fluorescence spectroscopy in phosphate buffer of pH 7.4. Fluorescence data revealed that the fluorescence quenching of BSA by HES was the result of the formed complex of HES–BSA. The binding constants and thermodynamic parameters at four different temperatures, the location of binding, and the nature of binding force were determined. The hydrogen bonds interactions were found to be the predominant intermolecular forces to stabilize the complex. The conformation of BSA was discussed by synchronous fluorescence and CD methods. The alterations of protein secondary structure upon complexation with HES were evident from the gradual decrease in α-helicity. The distance between the donor (BSA) and acceptor (flavonoid) was calculated from the fluorescence resonance energy transfer and found to be 1.978 nm. Common ions viz., Zn2+, K+, Cu2+, Ni2+, Mn2+ and Co2+ were found to influence the binding of flavonoid to protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    Article  PubMed  CAS  Google Scholar 

  2. Peters T (1996) All about albumin, biochemistry, genetics and medical application. Academic Press, San Diego

    Google Scholar 

  3. Heim KE, Tagliaferro AR, Bobilya DJ (2002) Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 13:572–584

    Article  PubMed  CAS  Google Scholar 

  4. Lefevre T, Subirade M (2001) Conformation rearrangement of β-lactoglobulin upon interaction with an anionic membrane. Biochim Biophys Acta 1594:37–50

    Article  Google Scholar 

  5. Xie MX, Jiang M, Li S, Liu Y (2004) Studies on the interaction of β-1,2,3,4,6-penta-O-galloyl-d-glucopyranose with human serum albumin. Acta Chim Sin 62:1460–1466

    CAS  Google Scholar 

  6. Wen M-G, Zhang X-B, Tian J-N, Ni S-H, Bian H-D, Huang Y-L, Liang H (2009) Binding interaction of xanthoxylin with bovine serum albumin. J Solut Chem 38:391–401

    Article  CAS  Google Scholar 

  7. Sun Y, Zhang H, Sun Y, Zhang Y, Liu H, Cheng J, Bi S, Zhang H (2010) Study of interaction between protein and main active components in Citrus aurantium L. by optical spectroscopy. J Lumin 130:270–279

    Article  CAS  Google Scholar 

  8. Wang Y-Q, Zhang H-M, Zhang G-C, Tao W-H, Tang S-H (2007) Interaction of the flavonoid hesperidin with bovine serum albumin: a fluorescence quenching study. J Lumin 126:211–218

    Article  CAS  Google Scholar 

  9. Xie M-X, Xu X-Y, Wang Y-D (2005) Interaction between hesperetin and human serum albumin revealed by spectroscopic methods. Biochim Biophys Acta 1724:215–224

    PubMed  CAS  Google Scholar 

  10. Jinyao Z, Fenglian R (2009) Influence of hydroxylation and glycosylation in ring A of soybean isoflavones on interaction with BSA. Spectrochim Acta A 72:682–685

    Article  Google Scholar 

  11. Lakowicz JR (1999) Fluorescence quenching: theory and applications. Principles of fluorescence spectroscopy. Kluwer Academic, New York

    Google Scholar 

  12. Liu YM, Li GZ, Sun XF (2004) Study on the interaction between colchicine and bovine serum albumins by fluorescence method. Chin J Anal Chem 32:615–618

    Google Scholar 

  13. Feng XZ, Lin Z, Yang LJ, Wang C, Bai CL (1998) Investigation of the interaction between acridine orange and bovine serum albumin. Talanta 47:1223–1229

    Article  PubMed  CAS  Google Scholar 

  14. Khan SN, Islam B, Rajeswari MR, Usmani H, Khan AU (2008) Interaction of anesthetic supplement thiopental with human serum albumin. Acta Biochim Polon 55:399–409

    PubMed  CAS  Google Scholar 

  15. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  16. Yue Y, Zhang Y, Zhou L, Qin J, Chen X (2008) In vitro study on the binding of herbicide glyphosate to human serum albumin by optical spectroscopy and molecular modelling. J Photochem Photobiol B 90:26–32

    PubMed  CAS  Google Scholar 

  17. Sudlow G, Birkett DJ, Wade DN (1975) The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11:824–832

    PubMed  CAS  Google Scholar 

  18. Gerbanowski A, Malabat C, Rabiller C, Gueguen J (1999) Grafting of aliphatic and aromatic probes on rapeseed 2S and 12S proteins: influence on their structural and physicochemical properties. J Agric Food Chem 47:5218–5226

    Article  PubMed  CAS  Google Scholar 

  19. Sengupta A, Hage DS (1999) Characterization of minor site probes for human serum albumin by high-performance affinity chromatography. Anal Chem 71:3821–3827

    Article  PubMed  CAS  Google Scholar 

  20. Yamasaki K, Maruyama T, Kragh-Hansen U, Otagiri M (1996) Characterization of site I on human serum albumin: concept about the structure of a drug binding site. Biochim Biophys Acta 1295:147–157

    Article  PubMed  Google Scholar 

  21. Förster T, Sinanoglu O (1996) Modern quantum chemistry, vol 3. Academic Press, New York

    Google Scholar 

  22. Jurasekova Z, Marconi G, Sanchez-Cortes S, Torreggiani A (2009) Spectroscopic and molecular modeling studies on the binding of the flavonoid luteolin and human serum albumin. Biopolymers 91:917–927

    Article  PubMed  CAS  Google Scholar 

  23. Predki PF, Harford C, Brar P, Sarkar B (1992) Further characterization of the N-terminal copper(I1)-and nickel(I1)-binding motif of protein. Biochem J 287:211–215

    PubMed  CAS  Google Scholar 

  24. Cui F, Zhang Q, Yan Y, Yao X, Qu G, Lu Y (2008) Study of characterization and application on the binding between 5-iodouridine with HSA by spectroscopic and modeling. Carbohydr Polym 73:464–472

    Article  CAS  Google Scholar 

  25. Zhou J, Wu X, Gu X, Zhou L, Song K, Wei S, Feng Y, Shen J (2009) Spectroscopic studies on the interaction of hypocrellin A and haemoglobin. Spectrochim Acta Part A 72:151–155

    Article  Google Scholar 

  26. Klajnert B, Bryszewska M (2002) Fluorescence studies on PAMAM dendrimers interactions with bovine serum albumin. Bioelectrochemistry 55:33–35

    Article  PubMed  CAS  Google Scholar 

  27. Stan D, Matei I, Mihailescu C, Savin M, Matache M, Hillebrand M, Baciu I (2009) Spectroscopic investigations of the binding interaction of a new indanedione derivative with human and bovine serum albumins. Molecules 14:1614–1626

    Article  PubMed  CAS  Google Scholar 

  28. Bentley KL, Thompson LK, Klebe RJ, Horowitz PM (1985) Fluorescence polarization: a general method for measuring ligand binding and membrane microviscosity. BioTechniques 3:356–365

    CAS  Google Scholar 

  29. Lu ZX, Cui T, Shi QL (1987) Applications of circular dichroism and optical rotatory dispersion in molecular biology, 1st edn. Science Press, Beijing

  30. Mandal P, Ganguly T (2009) Fluorescence spectroscopic characterization of the interaction of human adult hemoglobin and two isatins, 1-methylisatin and 1-phenylisatin: a comparative study. J Phys Chem B 113:14904–14913

    Article  PubMed  CAS  Google Scholar 

  31. Li Y, He WY, Dong Y, Sheng F, Hu Z (2006) Human serum albumin interaction with formononetin studied using fluorescence anisotropy, FT-IR spectroscopy and molecular modeling methods. Bioorg Med Chem 14:1431

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Council of Scientific and Industrial Research, New Delhi, for financial assistance (No. 01(2279)/08/EMR-II dated 20-11-2008). One of the authors (AHH) thanks the UGC, New Delhi for awarding the Fellowship for meritorious students in Science. Thanks are also due to the authorities of the Karnatak University, Dharwad, for providing the necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Seetharamappa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hegde, A.H., Sandhya, B. & Seetharamappa, J. Evaluation of binding and thermodynamic characteristics of interactions between a citrus flavonoid hesperitin with protein and effects of metal ions on binding. Mol Biol Rep 38, 4921–4929 (2011). https://doi.org/10.1007/s11033-010-0634-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0634-9

Keywords

Navigation