Skip to main content
Log in

17beta-estradiol attenuates pressure overload-induced myocardial hypertrophy through regulating caveolin-3 protein in ovariectomized female rats

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Our findings indicate that in ovariectomized female rats abdominal aortic constriction led to significant increases in left ventricular mass, myocyte diameter and heart weight/body weight (HW/BW) value, and decreases in interventricular septal thickness at diastole (IVSd), left ventricular percent fractional shortening (FS) and ejection fraction (EF). These pathophysiological alterations were largely reversed by administration with 17β-estradiol for eight weeks. Furthermore, the enhanced expression of extracellular signal-regulated kinases 1/2 and decreased expression of caveolin-3 were found in left ventricle of AAC group. 17β-estradiol (E2) administration increased the expression of caveolin-3 and reduced the level of ERK phosphorylation in these pressure-overloaded rats. Moreover, in cultured neonatal rat cardiomyocytes, E2 inhibited the hypertrophic response to angiotensin II. This effect was reinforced by the addition of extracellular signal-regulated kinases 1/2 inhibitor PD98059, but was impaired when the cells were pretreated with caveolae disruptor, methyl-β-cyclodextrin (M-β-CD). In conclusion, our data indicate that estrogen attenuates the hypertrophic response induced by pressure overload through down-regulation of extracellular signal-regulated kinases 1/2 phosphorylation and up-regulation of caveolin-3 expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HW/BW:

Heart weight/body weight

E2 :

17β-estradiol

ERK1/2:

Extracellular signal-regulated kinases 1/2

M-β-CD:

Methyl-β-cyclodextrin

Ang II:

Angiotensin II

LVH:

Left ventricular hypertrophy

ERs:

Estrogen receptors

MAPK:

Mitogen-activated protein kinase

PMSF:

Phenylmethylsulfonyl fluoride

OVX:

Ovariectomized

AAC:

Abdominal aorta constriction operation

LVDd:

Left ventricular end-diastolic diameters

LVDs:

Left ventricular end-systolic diameters

IVSd:

Interventricular septal thickness at diastole

LVPWD:

Left ventricular posterior wall diameter

FS:

Fractional shortening

EF:

Ejection fraction

References

  1. Zou XJ, Yang L, Yao SL (2008) Propofol depresses angiotensin II-induced cardiomyocyte hypertrophy in vitro. Exp Biol Med (Maywood) 233:200–208

    Article  CAS  Google Scholar 

  2. Kannel WB (2000) Incidence and epidemiology of heart failure. Heart Fail Rev 5:167–173

    Article  PubMed  CAS  Google Scholar 

  3. Lim WK, Wren B, Jepson N, Roy S, Caplan G (1999) Effect of hormone replacement therapy on left ventricular hypertrophy. Am J Cardiol 83:1132–1134, A1139

    Article  PubMed  CAS  Google Scholar 

  4. Maris ME, Melchert RB, Joseph J, Kennedy RH (2005) Gender differences in blood pressure and heart rate in spontaneously hypertensive and Wistar-Kyoto rats. Clin Exp Pharmacol Physiol 32:35–39

    Article  PubMed  Google Scholar 

  5. Babiker FA, Lips D, Meyer R, Delvaux E, Zandberg P, Janssen B et al (2006) Estrogen receptor beta protects the murine heart against left ventricular hypertrophy. Arterioscler Thromb Vasc Biol 26:1524–1530

    Article  PubMed  CAS  Google Scholar 

  6. Scherer PE, Lewis RY, Volonte D, Engelman JA, Galbiati F, Couet J et al (1997) Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 272:29337–29346

    Article  PubMed  CAS  Google Scholar 

  7. Thomas CM, Smart EJ (2008) Caveolae structure and function. J Cell Mol Med 12:796–809

    Article  PubMed  CAS  Google Scholar 

  8. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M et al (1996) Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160–15165

    Article  PubMed  CAS  Google Scholar 

  9. Meldrum DR, Wang M, Tsai BM, Kher A, Pitcher JM, Brown JW et al (2005) Intracellular signaling mechanisms of sex hormones in acute myocardial inflammation and injury. Front Biosci 10:1835–1867

    Article  PubMed  CAS  Google Scholar 

  10. Bueno OF, De Windt LJ, Lim HW, Tymitz KM, Witt SA, Kimball TR et al (2001) The dual-specificity phosphatase MKP-1 limits the cardiac hypertrophic response in vitro and in vivo. Circ Res 88:88–96

    PubMed  CAS  Google Scholar 

  11. Kim N, Kim H, Youm JB, Park WS, Warda M, Ko JH et al (2006) Site specific differential activation of ras/raf/ERK signaling in rabbit isoproterenol-induced left ventricular hypertrophy. Biochim Biophys Acta 1763:1067–1075

    Article  PubMed  CAS  Google Scholar 

  12. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J et al (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103:670–677

    PubMed  CAS  Google Scholar 

  13. Fujita T, Toya Y, Iwatsubo K, Onda T, Kimura K, Umemura S et al (2001) Accumulation of molecules involved in alpha1-adrenergic signal within caveolae: caveolin expression and the development of cardiac hypertrophy. Cardiovasc Res 51:709–716

    Article  PubMed  CAS  Google Scholar 

  14. Piech A, Massart PE, Dessy C, Feron O, Havaux X, Morel N et al (2002) Decreased expression of myocardial eNOS and caveolin in dogs with hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 282:H219–H231

    PubMed  CAS  Google Scholar 

  15. Woodman SE, Park DS, Cohen AW, Cheung MW, Chandra M, Shirani J et al (2002) Caveolin-3 knock-out mice develop a progressive cardiomyopathy and show hyperactivation of the p42/44 MAPK cascade. J Biol Chem 277:38988–38997

    Article  PubMed  CAS  Google Scholar 

  16. Engelman JA, Chu C, Lin A, Jo H, Ikezu T, Okamoto T et al (1998) Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett 428:205–211

    Article  PubMed  CAS  Google Scholar 

  17. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL et al (2003) Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 17:1263–1293

    Article  PubMed  CAS  Google Scholar 

  18. Jones NC, Fedorov YV, Rosenthal RS, Olwin BB (2001) ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186:104–115

    Article  PubMed  CAS  Google Scholar 

  19. Kawabe J, Okumura S, Lee MC, Sadoshima J, Ishikawa Y (2004) Translocation of caveolin regulates stretch-induced ERK activity in vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 286:H1845–H1852

    Article  PubMed  CAS  Google Scholar 

  20. Kawamura S, Miyamoto S, Brown JH (2003) Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J Biol Chem 278:31111–31117

    Article  PubMed  CAS  Google Scholar 

  21. Bellott AC, Patel KC, Burkholder TJ (2005) Reduction of caveolin-3 expression does not inhibit stretch-induced phosphorylation of ERK2 in skeletal muscle myotubes. J Appl Physiol 98:1554–1561

    Article  PubMed  CAS  Google Scholar 

  22. Doll D, Sarikas A, Krajcik R, Zolk O (2007) Proteomic expression analysis of cardiomyocytes subjected to proteasome inhibition. Biochem Biophys Res Commun 353:436–442

    Article  PubMed  CAS  Google Scholar 

  23. Patten RD, Aronovitz MJ, Einstein M, Lambert M, Pandian NG, Mendelsohn ME et al (2003) Effects of angiotensin II receptor blockade versus angiotensin-converting-enzyme inhibition on ventricular remodelling following myocardial infarction in the mouse. Clin Sci (Lond) 104:109–118

    Article  CAS  Google Scholar 

  24. Sharkey LC, Holycross BJ, Park S, Shiry LJ, Hoepf TM, McCune SA et al (1999) Effect of ovariectomy and estrogen replacement on cardiovascular disease in heart failure-prone SHHF/Mcc- fa cp rats. J Mol Cell Cardiol 31:1527–1537

    Article  PubMed  CAS  Google Scholar 

  25. van Eickels M, Grohe C, Cleutjens JP, Janssen BJ, Wellens HJ, Doevendans PA (2001) 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 104:1419–1423

    Article  PubMed  Google Scholar 

  26. Garrington TP, Johnson GL (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11:211–218

    Article  PubMed  CAS  Google Scholar 

  27. Bueno OF, De Windt LJ, Tymitz KM, Witt SA, Kimball TR, Klevitsky R et al (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19:6341–6350

    Article  PubMed  CAS  Google Scholar 

  28. Hunter JJ, Tanaka N, Rockman HA, Ross J Jr, Chien KR (1995) Ventricular expression of a MLC-2v-ras fusion gene induces cardiac hypertrophy and selective diastolic dysfunction in transgenic mice. J Biol Chem 270:23173–23178

    Article  PubMed  CAS  Google Scholar 

  29. Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7:589–600

    Article  PubMed  CAS  Google Scholar 

  30. Horikawa YT, Patel HH, Tsutsumi YM, Jennings MM, Kidd MW, Hagiwara Y et al (2008) Caveolin-3 expression and caveolae are required for isoflurane-induced cardiac protection from hypoxia and ischemia/reperfusion injury. J Mol Cell Cardiol 44:123–130

    Article  PubMed  CAS  Google Scholar 

  31. Kikuchi T, Oka N, Koga A, Miyazaki H, Ohmura H, Imaizumi T (2005) Behavior of caveolae and caveolin-3 during the development of myocyte hypertrophy. J Cardiovasc Pharmacol 45:204–210

    Article  PubMed  CAS  Google Scholar 

  32. Galbiati F, Engelman JA, Volonte D, Zhang XL, Minetti C, Li M et al (2001) Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and t-tubule abnormalities. J Biol Chem 276:21425–21433

    Article  PubMed  CAS  Google Scholar 

  33. Galbiati F, Volonte D, Chu JB, Li M, Fine SW, Fu M et al (2000) Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchenne-like muscular dystrophy phenotype. Proc Natl Acad Sci USA 97:9689–9694

    Article  PubMed  CAS  Google Scholar 

  34. Volonte D, Peoples AJ, Galbiati F (2003) Modulation of myoblast fusion by caveolin-3 in dystrophic skeletal muscle cells: implications for Duchenne muscular dystrophy and limb-girdle muscular dystrophy-1C. Mol Biol Cell 14:4075–4088

    Article  PubMed  CAS  Google Scholar 

  35. Galbiati F, Volonte D, Engelman JA, Scherer PE, Lisanti MP (1999) Targeted down-regulation of caveolin-3 is sufficient to inhibit myotube formation in differentiating C2C12 myoblasts. Transient activation of p38 mitogen-activated protein kinase is required for induction of caveolin-3 expression and subsequent myotube formation. J Biol Chem 274:30315–30321

    Article  PubMed  CAS  Google Scholar 

  36. Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE et al (1999) Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19:7289–7304

    PubMed  CAS  Google Scholar 

  37. Liu HM, Zhao XF, Guo LN, Tan Z, Wang TH (2007) Effects of caveolin-1 on the 17beta-estradiol-mediated inhibition of VSMC proliferation induced by vascular injury. Life Sci 80:800–812

    Article  PubMed  CAS  Google Scholar 

  38. Tan Z, Lin GP, Wang TH (2004) Possible involvement of caveolin-1 in the inhibition of endothelin-1 induced proliferation of vascular smooth muscle cells by 17beta-estradiol. Sheng Li Xue Bao 56:379–383

    PubMed  CAS  Google Scholar 

  39. Sheng H, Zhu J, Wu X, Yang D, Zhang J (2007) Angiotensin-converting enzyme inhibitor suppresses activation of calcineurin in renovascular hypertensive rats. Hypertens Res 30:1247–1254

    Article  PubMed  CAS  Google Scholar 

  40. Tutor AS, Penela P, Mayor F Jr (2007) Anti-beta1-adrenergic receptor autoantibodies are potent stimulators of the ERK1/2 pathway in cardiac cells. Cardiovasc Res 76:51–60

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ting-Huai Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, YH., Tan, Z., Fu, XD. et al. 17beta-estradiol attenuates pressure overload-induced myocardial hypertrophy through regulating caveolin-3 protein in ovariectomized female rats. Mol Biol Rep 38, 4885–4892 (2011). https://doi.org/10.1007/s11033-010-0630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0630-0

Keywords

Navigation