Skip to main content

Advertisement

Log in

Expression of multiple membrane-associated phospholipase A1 beta transcript variants and lysophosphatidic acid receptors in Ewing tumor cells

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The prognosis for patients with advanced stages of Ewing family tumors (EFT) is very poor. EFT express high levels of phosphatidic acid specific membrane-associated phospholipase A1 beta (lipase I, LIPI). LIPI is a cancer/testis antigen and the high tumor specificity suggests that LIPI might be an attractive target for new diagnostic and/or therapeutic developments. By using reverse transcriptase-polymerase chain reaction (RT-PCR), we observed simultaneous presence of multiple LIPI transcript variants in EFT. We cloned and sequenced these transcript variants from EFT cell lines. Sequence analysis indicated that all transcript variants were derived by alternative splicing. Homology modeling of corresponding protein structures suggested that different transcript variants differ in their regulatory lid domains. In addition, expression of receptors for lysophosphatidic acid (LPA) was analyzed in a panel of EFT cell lines by RT-PCR. We observed that EFT cell lines expressed high levels of LPA receptors. Different LIPI transcript variants present in EFT might be involved in the pathogenesis of EFT by signaling via these LPA receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ACTB:

Actin beta

EFT:

Ewing family tumor

ETS:

E-twenty-six

EWSR1:

Ewing sarcoma breakpoint region 1

FLI1:

Friend leukemia integration 1

LIPH:

Lipase H

LIPI:

Lipase I

LIPIΔE5:

LIPI splice variant with missing exon 5

LPA:

Lysophosphatidic acid

LPAR1:

LPA receptor 1

LPAR2:

LPA receptor 2

LPAR3:

LPA receptor 3

LPAR4:

LPA receptor 4

LPAR5:

LPA receptor 5

LPAR6:

LPA receptor 6

NB:

Neuroblastoma

NTC:

No template control

PBMC:

Peripheral blood mononuclear cells

Pnliprp2:

Pancreatic lipase related protein 2

PPAP2B:

Phosphatidic acid phosphatase type 2B

References

  1. Staege MS, Max D (2009) Genetics and epigenetics of the TET-ETS translocation network. Gene Epigenetics 2:1–15

    CAS  Google Scholar 

  2. Hühn R, Staege MS, Hesse M, Liebig B, Burdach SE (2009) Cleavage of the Ewing tumour-specific EWSR1-FLI1 mRNA by hammerhead ribozymes. Anticancer Res 29:1901–1908

    PubMed  Google Scholar 

  3. Todorova R (2009) In vitro interaction between the N-terminus of the Ewing’s sarcoma protein and the subunit of RNA polymerase II hsRPB7. Mol Biol Rep 36:1269–1274

    Article  PubMed  CAS  Google Scholar 

  4. Pfeifle C, Reinhardt K, Heins S, Burdach S, Staege MS (2009) Development and characterization of HAT-sensitive Ewing tumour cells for immunotherapy. Anticancer Res 29:4489–44896

    PubMed  CAS  Google Scholar 

  5. Staege MS, Hattenhorst UE, Neumann UE, Hutter C, Foja S, Burdach S (2003) DNA-microarrays as tools for the identification of tumor specific gene expression profiles: applications in tumor biology, diagnosis and therapy. Klin Padiatr 215:135–139

    Article  PubMed  CAS  Google Scholar 

  6. Staege MS, Hansen G, Baersch G, Burdach S (2004) Functional and molecular characterization of interleukin-2 transgenic Ewing tumor cells for in vivo immunotherapy. Pediatr Blood Cancer 43:23–34

    Article  PubMed  Google Scholar 

  7. Staege MS, Hutter C, Neumann I, Foja S, Hattenhorst UE, Hansen G, Afar D, Burdach SE (2004) DNA microarrays reveal relationship of Ewing family tumors to both endothelial and fetal neural crest-derived cells and define novel targets. Cancer Res 64:8213–8221

    Article  PubMed  CAS  Google Scholar 

  8. Foell JL, Hesse M, Volkmer I, Schmiedel BJ, Neumann I, Staege MS (2008) Membrane-associated phospholipase A1 beta (LIPI) Is an Ewing tumour-associated cancer/testis antigen. Pediatr Blood Cancer 51:228–234

    Article  PubMed  Google Scholar 

  9. Riggi N, Suvà ML, De Vito C, Provero P, Stehle JC, Baumer K, Cironi L, Janiszewska M, Petricevic T, Suvà D, Tercier S, Joseph JM, Guillou L, Stamenkovic I (2010) EWS-FLI-1 modulates miRNA145 and SOX2 expression to initiate mesenchymal stem cell reprogramming toward Ewing sarcoma cancer stem cells. Genes Dev 24:916–932

    Article  PubMed  CAS  Google Scholar 

  10. Scanlan MJ, Gordon CM, Williamson B, Lee SY, Chen YT, Stockert E, Jungbluth A, Ritter G, Jäger D, Jäger E, Knuth A, Old LJ (2002) Identification of cancer/testis genes by database mining and mRNA expression analysis. Int J Cancer 98:485–492

    Article  PubMed  CAS  Google Scholar 

  11. Wen XY, Hegele RA, Wang J, Wang DY, Cheung J, Wilson M, Yahyapour M, Bai Y, Zhuang L, Skaug J, Young TK, Connelly PW, Koop BF, Tsui LC, Stewart AK (2003) Identification of a novel lipase gene mutated in lpd mice with hypertriglyceridemia and associated with dyslipidemia in humans. Hum Mol Genet 12:1131–1143

    Article  PubMed  CAS  Google Scholar 

  12. Hiramatsu T, Sonoda H, Takanezawa Y, Morikawa R, Ishida M, Kasahara K, Sanai Y, Taguchi R, Aoki J, Arai H (2003) Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase A1s, mPA-PLA1alpha and mPA-PLA1beta. J Biol Chem 278:49438–49447

    Article  PubMed  CAS  Google Scholar 

  13. Staege MS, Hesse M, Max D (2010) Lipases and related molecules in cancer. Cancer Growth Metastasis 3:11–20

    Article  CAS  Google Scholar 

  14. Botma GJ, Heuveling M, Lamers JM, Jansen H, Verhoeven AJ (2007) Cloning, expression, and promoter analysis of hepatic lipase derived from human hyperplastic adrenals: evidence for alternative mRNA splicing. Cell Biochem Biophys 47:118–149

    Google Scholar 

  15. Larsson Forsell PK, Kennedy BP, Claesson HE (1999) The human calcium-independent phospholipase A2 gene multiple enzymes with distinct properties from a single gene. Eur J Biochem 262:575–585

    Article  PubMed  CAS  Google Scholar 

  16. Sonoda H, Aoki J, Hiramatsu T, Ishida M, Bandoh K, Nagai Y, Taguchi R, Inoue K, Arai H (2002) A novel phosphatidic acid-selective phospholipase A1 that produces lysophosphatidic acid. J Biol Chem 277:34254–34263

    Article  PubMed  CAS  Google Scholar 

  17. Nagai Y, Aoki J, Sato T, Amano K, Matsuda Y, Arai H, Inoue K (1999) An alternative splicing form of phosphatidylserine-specific phospholipase A1 that exhibits lysophosphatidylserine-specific lysophospholipase activity in humans. J Biol Chem 274:11053–11059

    Article  PubMed  CAS  Google Scholar 

  18. Lu J, Li J, Ji C, Yu W, Xu Z, Huang S (2008) Expression of lipoprotein lipase associated with lung adenocarcinoma tissues. Mol Biol Rep 35:59–63

    Article  PubMed  Google Scholar 

  19. Li W, Blankman JL, Cravatt BF (2007) A functional proteomic strategy to discover inhibitors for uncharacterized hydrolases. J Am Chem Soc 129:9594–9595

    Article  PubMed  CAS  Google Scholar 

  20. Foell JL, Volkmer I, Giersberg C, Kornhuber M, Horneff G, Staege MS (2008) Loss of detectability of Charcot-Leyden crystal protein transcripts in blood cells after treatment with dimethyl sulfoxide. J Immunol Methods 339:99–103

    Article  PubMed  CAS  Google Scholar 

  21. Neumann I, Foell JL, Bremer M, Volkmer I, Korholz D, Burdach S, Staege MS (2010) Retinoic acid enhances sensitivity of neuroblastoma cells for imatinib mesylate. Pediatr Blood Cancer 55:464–470

    Article  PubMed  Google Scholar 

  22. Li J, Neumann I, Volkmer I, Staege MS (2010) Down-regulation of achaete-scute complex homolog 1 (ASCL1) in neuroblastoma cells induces up-regulation of insulin-like growth factor 2 (IGF2). Mol Biol Rep (in press)

  23. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  24. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL Workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22:195–201

    Article  PubMed  CAS  Google Scholar 

  25. Reese MG, Eeckman FH, Kulp D, Haussler D (1997) Improved splice site detection in genie. J Comp Biol 4:311–323

    Article  CAS  Google Scholar 

  26. Roussel A, Yang Y, Ferrato F, Verger R, Cambillau C, Lowe M (1998) Structure and activity of rat pancreatic lipase-related protein 2. J Biol Chem 273:32121–32128

    Article  PubMed  CAS  Google Scholar 

  27. Ouchida M, Ohno T, Fujimura Y, Rao VN, Reddy ES (1995) Loss of tumorigenicity of Ewing’s sarcoma cells expressing antisense RNA to EWS-fusion transcripts. Oncogene 11:1049–1054

    PubMed  CAS  Google Scholar 

  28. Lambert G, Bertrand JR, Fattal E, Subra F, Pinto-Alphandary H, Malvy C, Auclair C, Couvreur P (2000) EWS fli-1 antisense nanocapsules inhibits Ewing sarcoma-related tumor in mice. Biochem Biophys Res Commun 279:401–406

    Article  PubMed  CAS  Google Scholar 

  29. Matsumoto Y, Tanaka K, Nakatani F, Matsunobu T, Matsuda S, Iwamoto Y (2001) Downregulation and forced expression of EWS-Fli1 fusion gene results in changes in the expression of G(1)regulatory genes. Br J Cancer 84:768–775

    Article  PubMed  CAS  Google Scholar 

  30. Toub N, Bertrand JR, Malvy C, Fattal E, Couvreur P (2006) Antisense oligonucleotide nanocapsules efficiently inhibit EWS-Fli1 expression in a Ewing’s sarcoma model. Oligonucleotides 16:158–168

    Article  PubMed  CAS  Google Scholar 

  31. Mateo-Lozano S, Gokhale PC, Soldatenkov VA, Dritschilo A, Tirado OM, Notario V (2006) Combined transcriptional and translational targeting of EWS/FLI-1 in Ewing’s sarcoma. Clin Cancer Res 12:6781–6790

    Article  PubMed  CAS  Google Scholar 

  32. Elhamess H, Bertrand JR, Maccario J, Maksimenko A, Malvy C (2009) Antitumor vectorized oligonucleotides in a model of Ewing sarcoma: unexpected role of nanoparticles. Oligonucleotides 19:255–264

    Article  PubMed  CAS  Google Scholar 

  33. Mackall CL, Rhee EH, Read EJ, Khuu HM, Leitman SF, Bernstein D, Tesso M, Long LM, Grindler D, Merino M, Kopp W, Tsokos M, Berzofsky JA, Helman LJ (2008) A pilot study of consolidative immunotherapy in patients with high-risk pediatric sarcomas. Clin Cancer Res 14:4850–4858

    Article  PubMed  CAS  Google Scholar 

  34. Aoki J, Inoue A, Makide K, Saiki N, Arai H (2007) Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89:197–204

    Article  PubMed  CAS  Google Scholar 

  35. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF, Zeeberg B, Buetow KH, Schaefer CF, Bhat NK, Hopkins RF, Jordan H, Moore T, Max SI, Wang J, Hsieh F, Diatchenko L, Marusina K, Farmer AA, Rubin GM, Hong L, Stapleton M, Soares MB, Bonaldo MF, Casavant TL, Scheetz TE, Brownstein MJ, Usdin TB, Toshiyuki S, Carninci P, Prange C, Raha SS, Loquellano NA, Peters GJ, Abramson RD, Mullahy SJ, Bosak SA, McEwan PJ, McKernan KJ, Malek JA, Gunaratne PH, Richards S, Worley KC, Hale S, Garcia AM, Gay LJ, Hulyk SW, Villalon DK, Muzny DM, Sodergren EJ, Lu X, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madan A, Young AC, Shevchenko Y, Bouffard GG, Blakesley RW, Touchman JW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Krzywinski MI, Skalska U, Smailus DE, Schnerch A, Schein JE, Jones SJ, Marra MA, Team MammalianGeneCollectionProgram (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci USA 99:16899–16903

    Article  PubMed  Google Scholar 

  36. Chan LC, Peters W, Xu Y, Chun J, Farese RV Jr, Cases S (2007) LPA3 receptor mediates chemotaxis of immature murine dendritic cells to unsaturated lysophosphatidic acid (LPA). J Leukoc Biol 82:1193–1200

    Article  PubMed  CAS  Google Scholar 

  37. Xu Y, Gaudette DC, Boynton JD, Frankel A, Fang XJ, Sharma A, Hurteau J, Casey G, Goodbody A, Mellors A et al (1995) Characterization of an ovarian cancer activating factor in ascites from ovarian cancer patients. Clin Cancer Res 1:1223–1232

    PubMed  CAS  Google Scholar 

  38. Bandoh K, Aoki J, Taira A, Tsujimoto M, Arai H, Inoue K (2000) Lysophosphatidic acid (LPA) receptors of the EDG family are differentially activated by LPA species. Structure-activity relationship of cloned LPA receptors. FEBS Lett 478:159–165

    Article  PubMed  CAS  Google Scholar 

  39. Nakane S, Oka S, Arai S, Waku K, Ishima Y, Tokumura A, Sugiura T (2002) 2-Arachidonoyl-sn-glycero-3-phosphate, an arachidonic acid-containing lysophosphatidic acid: occurrence and rapid enzymatic conversion to 2-arachidonoyl-sn-glycerol, a cannabinoid receptor ligand, in rat brain. Arch Biochem Biophys 402:51–58

    Article  PubMed  CAS  Google Scholar 

  40. Shan TL, Li K, Tang ZL, Yang SL, Ma YH, Guan WJ, Guo DZ (2009) Full-length coding sequences, polymorphism and chromosomal localizations of the porcine EDG4 and EDG7 genes. Mol Biol Rep 36:751–756

    Article  PubMed  CAS  Google Scholar 

  41. Kumar SA, Hu X, Brown M, Kuschak B, Hernandez TA, Johnston JB, Gibson SB (2009) Lysophosphatidic acid receptor expression in chronic lymphocytic leukemia leads to cell survival mediated though vascular endothelial growth factor expression. Leuk Lymphoma 50:2038–2048

    Article  PubMed  CAS  Google Scholar 

  42. Yamada T, Yano S, Ogino H, Ikuta K, Kakiuchi S, Hanibuchi M, Kanematsu T, Taniguchi T, Sekido Y, Sone S (2008) Lysophosphatidic acid stimulates the proliferation and motility of malignant pleural mesothelioma cells through lysophosphatidic acid receptors, LPA1 and LPA2. Cancer Sci 99:1603–1610

    Article  PubMed  CAS  Google Scholar 

  43. Shida D, Kitayama J, Yamaguchi H, Okaji Y, Tsuno NH, Watanabe T, Takuwa Y, Nagawa H (2003) Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1. Cancer Res 63:1706–1711

    PubMed  CAS  Google Scholar 

  44. Zhou Z, Niu J, Zhang Z (2009) The role of lysophosphatidic acid receptors in phenotypic modulation of vascular smooth muscle cells (2010). Mol Biol Rep 37:2675–2686

    Article  PubMed  Google Scholar 

  45. Lin CI, Chen CN, Huang MT, Lee SJ, Lin CH, Chang CC, Lee H (2008) Lysophosphatidic acid upregulates vascular endothelial growth factor-C and tube formation in human endothelial cells through LPA(1/3), COX-2, and NF-kappaB activation- and EGFR transactivation-dependent mechanisms. Cell Signal 20:1804–1814

    Article  PubMed  CAS  Google Scholar 

  46. Sumida H, Noguchi K, Kihara Y, Abe M, Yanagida K, Hamano F, Sato S, Tamaki K, Morishita Y, Kano MR, Iwata C, Miyazono K, Sakimura K, Shimizu T, Ishii S (2019) LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood (in press)

  47. Ewing J (1921) Diffuse endothelioma of bone. Proc N Y Pathol Soc 21:17–24

    Google Scholar 

  48. Richter GH, Plehm S, Fasan A, Rössler S, Unland R, Bennani-Baiti IM, Hotfilder M, Löwel D, von Luettichau I, Mossbrugger I, Quintanilla-Martinez L, Kovar H, Staege MS, Müller-Tidow C, Burdach S (2009) EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci USA 106:5324–5329

    Article  PubMed  CAS  Google Scholar 

  49. Tanyi JL, Morris AJ, Wolf JK, Fang X, Hasegawa Y, Lapushin R, Auersperg N, Sigal YJ, Newman RA, Felix EA, Atkinson EN, Mills GB (2003) The human lipid phosphate phosphatase-3 decreases the growth, survival, and tumorigenesis of ovarian cancer cells: validation of the lysophosphatidic acid signaling cascade as a target for therapy in ovarian cancer. Cancer Res 63:1073–1082

    PubMed  CAS  Google Scholar 

  50. Max D, Hesse M, Volkmer I, Staege MS (2009) High expression of the evolutionarily conserved alpha/beta hydrolase domain containing 6 (ABHD6) in Ewing tumors. Cancer Sci 100:2383–2389

    Article  PubMed  CAS  Google Scholar 

  51. Kazantseva A, Goltsov A, Zinchenko R, Grigorenko AP, Abrukova AV, Moliaka YK, Kirillov AG, Guo Z, Lyle S, Ginter EK, Rogaev EI (2006) Human hair growth deficiency is linked to a genetic defect in the phospholipase gene LIPH. Science 314:982–985

    Article  PubMed  CAS  Google Scholar 

  52. Tariq M, Ayub M, Jelani M, Basit S, Naz G, Wasif N, Raza SI, Naveed AK, ullah Khan S, Azeem Z, Yasinzai M, Wali A, Ali G, Chishti MS, Ahmad W (2009) Mutations in the P2RY5 gene underlie autosomal recessive hypotrichosis in 13 Pakistani families. Br J Dermatol 160:1006–1010

    Article  PubMed  CAS  Google Scholar 

  53. Shinkuma S, Akiyama M, Inoue A, Aoki J, Natsuga K, Nomura T, Arita K, Abe R, Ito K, Nakamura H, Ujiie H, Shibaki A, Suga H, Tsunemi Y, Nishie W, Shimizu H (2010) Prevalent LIPH founder mutations lead to loss of P2Y5 activation ability of PA-PLA1 alpha in autosomal recessive hypotrichosis. Hum Mutat 31:602–610

    PubMed  CAS  Google Scholar 

  54. Davis RC, Wong H, Nikazy J, Wang K, Han Q, Schotz MC (1992) Chimeras of hepatic lipase and lipoprotein lipase. Domain localization of enzyme-specific properties. J Biol Chem 267:21499–21504

    PubMed  CAS  Google Scholar 

  55. Jennens ML, Lowe ME (1995) C-terminal domain of human pancreatic lipase is required for stability and maximal activity but not colipase reactivation. J Lipid Res 36:1029–1036

    PubMed  CAS  Google Scholar 

  56. Harper K, Arsenault D, Boulay-Jean S, Lauzier A, Lucien F, Dubois CM (2010) Autotaxin promotes cancer invasion via the lysophosphatidic acid receptor 4: participation of the cyclic AMP/EPAC/Rac1 signaling pathway in invadopodia formation. Cancer Res 70:4634–4643

    Article  PubMed  CAS  Google Scholar 

  57. Lee Z, Cheng CT, Zhang H, Subler MA, Wu J, Mukherjee A, Windle JJ, Chen CK, Fang X (2008) Role of LPA4/p2y9/GPR23 in negative regulation of cell motility. Mol Biol Cell 19:5435–5445

    Article  PubMed  CAS  Google Scholar 

  58. Scotlandi K, Remondini D, Castellani G, Manara MC, Nardi F, Cantiani L, Francesconi M, Mercuri M, Caccuri AM, Serra M, Knuutila S, Picci P (2009) Overcoming resistance to conventional drugs in Ewing sarcoma and identification of molecular predictors of outcome. J Clin Oncol 27:2209–2216

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ines Volkmer and Siggi Heins for grateful technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Sebastian Staege.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmiedel, B.J., Hutter, C., Hesse, M. et al. Expression of multiple membrane-associated phospholipase A1 beta transcript variants and lysophosphatidic acid receptors in Ewing tumor cells. Mol Biol Rep 38, 4619–4628 (2011). https://doi.org/10.1007/s11033-010-0595-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0595-z

Keywords

Navigation