Skip to main content
Log in

Pioglitazone inhibits TGFβ induced keratocyte transformation to myofibroblast and extracellular matrix production

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Phenotype transformation of corneal keratocyte to myofibroblast plays an important role in the wound healing process of cornea and TGFβ is considered to be the most important mediator to induce myofibroblast trans-differentiation. Peroxisome proliferator-activated receptors-γ (PPAR-γ) activation has been proved to exert anti-fibrotic effect in many tissues. In this study, we investigated the effect of PPAR-γ agonist, pioglitazone, on myofibroblast transformation, extracellular matrix production and cell proliferation. The results showed pioglitazone inhibited the TGFβ-driven myofibroblast differentiation, as determined by F-actin fluorescence staining, α-smooth muscle actin-specific immunocytochemistry and western blot analysis. Pioglitazone also potently attenuated TGFβ induced type I collagen and fibronectin mRNA and protein production. Moreover, pioglitazone showed inhibitory effect on TGFβ induced cell proliferation. The irreversible PPAR-γ antagonist GW9662, partially reversed the inhibition of collagen I and fibronectin expression but not myofibroblast transformation, suggesting both PPAR-γ dependent and PPAR-γ independent mechanisms were involved in the action of pioglitazone. Therefore, our study indicates pioglitazone has a potential application in therapy of corneal fibrosis and PPAR-γ might be a promising therapy target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zafiriou S, Stanners SR, Saad S, Polhill TS, Poronnik P, Pollock CA (2005) Pioglitazone inhibits cell growth and reduces matrix production in human kidney fibroblasts. J Am Soc Nephrol 16:638–645

    Article  PubMed  CAS  Google Scholar 

  2. Yang L, Chan CC, Kwon OS, Liu S, McGhee J, Stimpson SA, Chen LZ, Harrington WW, Symonds WT, Rockey DC (2006) Regulation of peroxisome proliferator-activated receptor-gamma in liver fibrosis. Am J Physiol Gastrointest Liver Physiol 291:G902–G911

    Article  PubMed  CAS  Google Scholar 

  3. Masamune A, Kikuta K, Satoh M, Sakai Y, Satoh A, Shimosegawa T (2002) Ligands of peroxisome proliferator-activated receptor-gamma block activation of pancreatic stellate cells. J Biol Chem 277:141–147

    Article  PubMed  CAS  Google Scholar 

  4. Jaster R, Lichte P, Fitzner B, Brock P, Glass A, Karopka T, Gierl L, Koczan D, Thiesen HJ, Sparmann G, Emmrich J, Liebe S (2005) Peroxisome proliferator-activated receptor gamma overexpression inhibits pro-fibrogenic activities of immortalised rat pancreatic stellate cells. J Cell Mol Med 9:670–682

    Article  PubMed  CAS  Google Scholar 

  5. Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, Phipps RP, Sime PJ (2005) PPAR gamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 288:L1146–L1153

    Article  PubMed  CAS  Google Scholar 

  6. Nakamoto M, Ohya Y, Shinzato T, Mano R, Yamazato M, Sakima A, Takishita S (2008) Pioglitazone, a thiazolidinedione derivative, attenuates left ventricular hypertrophy and fibrosis in salt-sensitive hypertension. Hypertens Res 31:353–361

    Article  PubMed  CAS  Google Scholar 

  7. Pan H, Chen J, Xu J, Chen M, Ma R (2009) Antifibrotic effect by activation of peroxisome proliferator-activated receptor-γ in corneal fibroblasts. Mol Vis 15:2279–2286

    PubMed  CAS  Google Scholar 

  8. Xing D, Bonanno JA (2009) Effect of cAMP on TGF beta1-induced corneal keratocyte-myofibroblast transformation. Invest Ophthalmol Vis Sci 50:626–633

    Article  PubMed  Google Scholar 

  9. Jester JV, Barry-Lane PA, Cavanagh HD, Petroll WM (1996) Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes. Cornea 15:505–516

    Article  PubMed  CAS  Google Scholar 

  10. Funderburgh JL, Funderburgh ML, Mann MM, Corpuz L, Roth MR (2001) Proteoglycan expression during transforming growth factor beta-induced keratocyte-myofibroblast transdifferentiation. J Biol Chem 276:44173–44178

    Article  PubMed  CAS  Google Scholar 

  11. Jester JV, Petroll WM, Cavanagh HD (1999) Corneal stromal wound healing in refractive surgery: the role of myofibroblasts. Prog Retin Eye Res 18:311–356

    Article  PubMed  CAS  Google Scholar 

  12. Netto MV, Mohan RR, Sinha S, Sharma A, Dupps W, Wilson SE (2006) Stromal haze, myofibroblasts, and surface irregularity after PRK. Exp Eye Res 82:788–797

    Article  PubMed  CAS  Google Scholar 

  13. Jester JV, Huang J, Barry-Lane PA, Kao WW, Petroll WM, Cavanagh HD (1999) Transforming growth factor (beta)-mediated corneal myofibroblast differentiation requires actin and fibronectin assembly. Invest Ophthalmol Vis Sci 40:1959–1967

    PubMed  CAS  Google Scholar 

  14. Fini ME (1999) Keratocyte and fibroblast phenotypes in the repairing cornea. Prog Retin Eye Res 18:529–551

    Article  PubMed  CAS  Google Scholar 

  15. He JC, Bazan HEP (2008) Epidermal growth factor synergism with TGF-beta 1 via PI-3 kinase activity in corneal keratocyte differentiation. Invest Ophthalmol Vis Sci 49:2936–2945

    Article  PubMed  Google Scholar 

  16. Garrett Q, Khaw PT, Blalock TD, Schultz GS, Grotendorst GR, Daniels JT (2004) Involvement of CTGF in TGF-beta1-stimulation of myofibroblast differentiation and collagen matrix contraction in the presence of mechanical stress. Invest Ophthalmol Vis Sci 45:1109–1116

    Article  PubMed  Google Scholar 

  17. Jester JV, Huang JY, Petroll WM, Cavanagh HD (2002) TGF beta induced myofibroblast differentiation of rabbit keratocytes requires synergistic TGF beta, PDGF and integrin signaling. Exp Eye Res 75:645–657

    Article  PubMed  CAS  Google Scholar 

  18. Kim WJ, Mohan RR, Wilson SE (1999) Effect of PDGF, IL-1alpha, and BMP2/4 on corneal fibroblast chemotaxis: expression of the platelet-derived growth factor system in the cornea. Invest Ophthalmol Vis Sci 40:1364–1372

    PubMed  CAS  Google Scholar 

  19. Kaur H, Chaurasia SS, Agrawal V, Suto C, Wilson SE (2009) Corneal myofibroblast viability: opposing effects of IL-1 and TGF beta1. Exp Eye Res 89:152–158

    Article  PubMed  CAS  Google Scholar 

  20. Wilson SE, Chaurasia SS, Medeiros FW (2007) Apoptosis in the initiation, modulation and termination of the corneal wound healing response. Exp Eye Res 85:305–311

    Article  PubMed  CAS  Google Scholar 

  21. Xing D, Bonanno JA (2009) Hypoxia reduces TGFbeta1-induced corneal keratocyte myofibroblast transformation. Mol Vis 15:1827–1834

    PubMed  CAS  Google Scholar 

  22. Kaur H, Chaurasia SS, de Medeiros FW, Agrawal V, Salomao MQ, Singh N, Ambati BK, Wilson SE (2009) Corneal stroma PDGF blockade and myofibroblast development. Exp Eye Res 88:960–965

    Article  PubMed  CAS  Google Scholar 

  23. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240:889–895

    Article  PubMed  CAS  Google Scholar 

  24. Kota BP, Huang THW, Roufogalis BD (2005) An overview on biological mechanisms of PPARs. Pharmacol Res 51:85–94

    Article  PubMed  CAS  Google Scholar 

  25. Berger JP, Akiyama TE, Meinke PT (2005) PPARs: therapeutic targets for metabolic disease. Trends Pharmacol Sci 26:244–251

    Article  PubMed  CAS  Google Scholar 

  26. Barroso I, Gurnell M, Crowley VEF, Agostini M, Schwabe JW, Soos MA, Maslen GL, Williams TDM, Lewis H, Schafer AJ, Chatterjee VKK, O’Rahilly S (1999) Dominant negative mutations in human PPAR gamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402:880–883

    PubMed  CAS  Google Scholar 

  27. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM (2001) PPAR-gamma dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 7:48–52

    Article  PubMed  CAS  Google Scholar 

  28. Olefsky JM, Saltiel AR (2000) PPAR gamma and the treatment of insulin resistance. Trends Endocrinol Metab 11:362–368

    Article  PubMed  CAS  Google Scholar 

  29. Staels B, Fruchart JC (2005) Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes 54:2460–2470

    Article  PubMed  CAS  Google Scholar 

  30. Ni HX, Yu NJ, Yang XH (2009) The study of ginsenoside on PPARgamma expression of mononuclear macrophage in type 2 diabetes. Mol Biol Rep 37:2975–2979

    Article  PubMed  Google Scholar 

  31. Saika S, Yamanaka O, Okada Y, Miyamoto T, Kitano A, Flanders KC, Ohnishi Y, Nakajima Y, Kao WWY, Ikeda K (2007) Effect of overexpression of ppar gamma on the healing process of corneal alkali burn in mice. Am J Physiol Cell Physiol 293:C75–C86

    Article  PubMed  CAS  Google Scholar 

  32. Yamanaka O, Miyazaki K, Kitano A, Saika S, Nakajima Y, Ikeda K (2009) Suppression of injury-induced conjunctiva scarring by peroxisome proliferator-activated receptor gamma gene transfer in mice. Invest Ophthalmol Vis Sci 50:187–193

    Article  PubMed  Google Scholar 

  33. Hocevar BA, Brown TL, Howe PH (1999) TGF-beta induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J 18:1345–1356

    Article  PubMed  CAS  Google Scholar 

  34. Stampfer MR, Yaswen P, Alhadeff M, Hosoda J (1993) TGF beta induction of extracellular matrix associated proteins in normal and transformed human mammary epithelial cells in culture is independent of growth effects. J Cell Physiol 155:210–221

    Article  PubMed  CAS  Google Scholar 

  35. Zhang Y, Huang P, Jiang T, Zhao J, Zhang N (2009) Role of aldose reductase in TGF-beta1-induced fibronectin synthesis in human mesangial cells. Mol Biol Rep 37:2735–2742

    Article  PubMed  Google Scholar 

  36. Liu XD, Sun Y, Constantinescu SN, Karam E, Weinberg RA, Lodish HF (1997) Transforming growth factor beta-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc Natl Acad Sci USA 94:10669–10674

    Article  PubMed  CAS  Google Scholar 

  37. Wang X, Sun W, Bai J, Ma L, Yu Y, Geng J, Qi J, Shi Z, Fu S (2009) Growth inhibition induced by transforming growth factor-beta1 in human oral squamous cell carcinoma. Mol Biol Rep 36:861–869

    Article  PubMed  CAS  Google Scholar 

  38. Carrington LM, Albon J, Anderson I, Kamma C, Boulton M (2006) Differential regulation of key stages in early corneal wound healing by TGF-beta isoforms and their inhibitors. Invest Ophthalmol Vis Sci 47:1886–1894

    Article  PubMed  Google Scholar 

  39. Tan X, Dagher H, Hutton CA, Bourke JE (2010) Effects of PPAR gamma ligands on TGF-beta1-induced epithelial-mesenchymal transition in alveolar epithelial cells. Respir Res 11:21

    Article  PubMed  Google Scholar 

  40. Burgess HA, Daugherty LE, Thatcher TH, Lakatos HF, Ray DM, Redonnet M, Phipps RP, Sime PJ (2005) PPARgamma agonists inhibit TGF-beta induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am J Physiol Lung Cell Mol Physiol 288:L1146–L1153

    Article  PubMed  CAS  Google Scholar 

  41. Han S, Ritzenthaler JD, Rivera HN, Roman J (2005) Peroxisome proliferator-activated receptor-gamma ligands suppress fibronectin gene expression in human lung carcinoma cells: involvement of both CRE and Sp1. Am J Physiol Lung Cell Mol Physiol 289:L419–L428

    Article  PubMed  CAS  Google Scholar 

  42. Zhang GY, Yi CG, Li X, Ma B, Li ZJ, Chen XL, Guo SZ, Gao WY (2009) Troglitazone suppresses transforming growth factor-beta1-induced collagen type I expression in keloid fibroblasts. Br J Dermatol 160:762–770

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by National Natural Science Foundation of China (81000368), the Fundamental Research Funds for the Central Universities (21609315) and Medical Scientific Research Foundation of Guangdong Province, China (B2008091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Wei Pan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, HW., Xu, JT. & Chen, JS. Pioglitazone inhibits TGFβ induced keratocyte transformation to myofibroblast and extracellular matrix production. Mol Biol Rep 38, 4501–4508 (2011). https://doi.org/10.1007/s11033-010-0581-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0581-5

Keywords

Navigation