Skip to main content
Log in

Identification of an alternative splicing isoform of chicken Lmbr1

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Lmbr1 is the key candidate gene for limb development. Until now, at least five and four alternative splicing isoforms of Lmbr1 gene have been found in human and mouse, respectively. However, only two alternative splicing isoforms of this homologous gene have been reported in chicken. In the present study, one novel chicken Lmbr1 transcript variant (designated Lmbr1-1) was identified by 5′ RACE and RT-PCR. Chicken Lmbr1-1 possesses one novel transcription start site different from Lmbr1-N, and was predicted to encode one 192 amino acid protein with length variation in comparison with chicken LMBR1-N protein, which was produced by 5′ spliced site variation of chicken Lmbr1-N exon 10. Comparing with Lmbr1-N transcript, chicken Lmbr1-1 exhibited restricted tissue distribution of the expression. Comparative sequence analysis revealed a highly conservative intron element between chicken and mammalians from the intron 9 of chicken Lmbr1-N, indicating their possible importance as intronic elements in the regulation of alternative splicing of Lmbr1 in vertebrates. By direct PCR sequencing the exon 10 and its flanking sequences in chicken Lmbr1-N, four variation sites/haplotypes were identified from six chicken breeds. One 797A/G nonsynonymous mutation (266Arg/Gln) locating in exon 10 of chicken Lmbr1-N was predicted to affect the exon splice enhancer motif for serine/arginine-rich protein recognition. These data demonstrated that chicken Lmbr1 was alternatively spliced to generate multiple splice forms, as was the case in mammals and each of the alternative splicing isoforms might function differentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Heus HC, Hing A, van Baren MJ et al (1999) A physical and transcriptional map of the preaxial polydactyly locus on chromosome 7q36. Genomics 57:342–351. doi:10.1006/geno.1999.5796

    Article  PubMed  CAS  Google Scholar 

  2. Clark RM, Marker PC, Kingsley DM (2000) A novel candidate gene for mouse and human preaxial polydactyly with altered expression in limbs of Hemimelic extra-toes mutant mice. Genomics 67:19–27. doi:10.1006/geno.2000.6225

    Article  PubMed  CAS  Google Scholar 

  3. Balci S, Demirtas M, Civelek B, Piskin M, Sensoz O, Akarsu AN (1999) Phenotypic variability of triphalangeal thumb-polysyndactyly syndrome linked to chromosome 7q36. Am J Med Genet 87:399–406. doi:10.1002/(SICI)1096-8628(19991222)87:5<399:AID-AJMG6>3.0.CO;2-A

    Article  PubMed  CAS  Google Scholar 

  4. Dobbs MB, Dietz FR, Gurnett CA, Morcuende JA, Steyers CM, Murray JC (2000) Localization of dominantly inherited isolated triphalangeal thumb to chromosomal region 7q36. J Orthop Res 18:340–344. doi:10.1002/jor.1100180303

    Article  PubMed  CAS  Google Scholar 

  5. Heutink P, Zguricas J, van Oosterhout L et al (1994) The gene for triphalangeal thumb maps to the subtelomeric region of chromosome 7q. Nat Genet 6:287–292. doi:10.1038/ng0394-287

    Article  PubMed  CAS  Google Scholar 

  6. Sato D, Liang D, Wu L et al (2007) A syndactyly type IV locus maps to 7q36. J Hum Genet 52:561–564. doi:10.1007/s10038-007-0150-5

    Article  PubMed  CAS  Google Scholar 

  7. Zguricas J, Heus H, Morales-Peralta E et al (1999) Clinical and genetic studies on 12 preaxial polydactyly families and refinement of the localisation of the gene responsible to a 1.9 cM region on chromosome 7q36. J Med Genet 36:32–40. doi:10.1136/jmg.36.1.33

    PubMed  CAS  Google Scholar 

  8. Escamilla MA, DeMille MC, Benavides E et al (2000) A minimalist approach to gene mapping: locating the gene for acheiropodia, by homozygosity analysis. Am J Hum Genet 66:1995–2000. doi:10.1086/302921

    Article  PubMed  CAS  Google Scholar 

  9. Ianakiev P, van Baren MJ, Daly MJ et al (2001) Acheiropodia is caused by a genomic deletion in C7orf2, the human orthologue of the Lmbr1 gene. Am J Hum Genet 68:38–45. doi:10.1086/316955

    Article  PubMed  CAS  Google Scholar 

  10. Huang Y, Du X, Deng X et al (2007) Single nucleotide polymorphisms in chicken lmbr1 gene were associated with chicken growth and carcass traits. Sci China C Life Sci 50:62–69. doi:10.1007/s11427-007-2033-6

    Article  PubMed  CAS  Google Scholar 

  11. Huang YQ, Deng XM, Du ZQ et al (2006) Single nucleotide polymorphisms in the chicken Lmbr1 gene are associated with chicken polydactyly. Gene 374:10–18. doi:10.1016/j.gene.2005.07.047

    Article  PubMed  CAS  Google Scholar 

  12. Lettice LA, Heaney SJ, Purdie LA et al (2003) A long-range Shh enhancer regulates expression in the developing limb and fin and is associated with preaxial polydactyly. Hum Mol Genet 12:1725–1735. doi:10.1093/hmg/ddg180

    Article  PubMed  CAS  Google Scholar 

  13. Lettice LA, Horikoshi T, Heaney SJ et al (2002) Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad Sci USA 99:7548–7553. doi:10.1073/pnas.112212199

    Article  PubMed  CAS  Google Scholar 

  14. Chang DT, Lopez A, von Kessler DP et al (1994) Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development 120:3339–3353

    PubMed  CAS  Google Scholar 

  15. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476. doi:10.1038/nature07509

    Article  PubMed  CAS  Google Scholar 

  16. Clark RM, Marker PC, Roessler E et al (2001) Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1. Genetics 159:715–726

    PubMed  CAS  Google Scholar 

  17. Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169. doi:10.1086/379378

    Article  PubMed  CAS  Google Scholar 

  18. Mignone F, Grillo G, Licciulli F et al (2005) UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs. Nucleic Acids Res 33:D141–D146. doi:10.1093/nar/gki021

    Article  PubMed  CAS  Google Scholar 

  19. Pesole G, Grillo G, Larizza A, Liuni S (2000) The untranslated regions of eukaryotic mRNAs: structure, function, evolution and bioinformatic tools for their analysis. Brief Bioinf 1:236–249. doi:10.1093/bib/1.3.236

    Article  CAS  Google Scholar 

  20. Pesole G, Mignone F, Gissi C, Grillo G, Licciulli F, Liuni S (2001) Structural and functional features of eukaryotic mRNA untranslated regions. Gene 276:73–81. doi:10.1016/S0378-1119(01)00674-6

    Article  PubMed  CAS  Google Scholar 

  21. Charlesworth A, Wilczynska A, Thampi P, Cox LL, MacNicol AM (2006) Musashi regulates the temporal order of mRNA translation during Xenopus oocyte maturation. EMBO J 25:2792–2801. doi:10.1038/sj.emboj.7601159

    Article  PubMed  CAS  Google Scholar 

  22. Duchow HK, Brechbiel JL, Chatterjee S, Gavis ER (2005) The nanos translational control element represses translation in somatic cells by a Bearded box-like motif. Dev Biol 282:207–217. doi:10.1016/j.ydbio.2005.03.025

    Article  PubMed  CAS  Google Scholar 

  23. Cartegni L, Wang J, Zhu Z, Zhang MQ, Krainer AR (2003) ESEfinder: a web resource to identify exonic splicing enhancers. Nucleic Acids Res 31:3568–3571. doi:10.1093/nar/gkg616

    Article  PubMed  CAS  Google Scholar 

  24. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40:1413–1415. doi:10.1038/ng.259

    Article  PubMed  CAS  Google Scholar 

  25. Horikoshi T, Endo N, Shibata M, Heutink P, Hill RE, Noji S (2003) Disruption of the C7orf2/Lmbr1 genic region is associated with preaxial polydactyly in humans and mice. J Bone Miner Metab 21:1–4. doi:10.1007/s007740300000

    Article  PubMed  Google Scholar 

  26. Maas SA, Fallon JF (2004) Isolation of the chicken Lmbr1 coding sequence and characterization of its role during chick limb development. Dev Dyn 229:520–528. doi:10.1002/dvdy.10502

    Article  PubMed  CAS  Google Scholar 

  27. Hare MP, Palumbi SR (2003) High intron sequence conservation across three mammalian orders suggests functional constraints. Mol Biol Evol 20:969–978. doi:10.1093/molbev/msg111

    Article  PubMed  CAS  Google Scholar 

  28. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298. doi:10.1038/nrg775

    Article  PubMed  CAS  Google Scholar 

  29. Blencowe BJ (2000) Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci 25:106–110. doi:10.1016/S0968-0004(00)01549-8

    Article  PubMed  CAS  Google Scholar 

  30. Yan XB, Tang CH, Huang Y et al (2010) Alternative splicing in exon 9 of glucocorticoid receptor pre-mRNA is regulated by SRp40. Mol Biol Rep 37:1427–1433. doi:10.1007/s11033-009-9529-z

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this research was provided by National Natural Science Foundation of China (30771533), the State Major Basic Research Development Program (G20000161) and Innovation Scientists and Technicians Troop Construction Projects of Zhengzhou City (096SYJH16092).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 403 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, Y., Chen, W., Li, N. et al. Identification of an alternative splicing isoform of chicken Lmbr1 . Mol Biol Rep 38, 4397–4403 (2011). https://doi.org/10.1007/s11033-010-0567-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0567-3

Keywords

Navigation