Skip to main content
Log in

Molecular analysis of a homogentisate phytyltransferase gene from Lactuca sativa L.

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Tocochromanols, usually known as vitamin E, play a crucial role in human and animal nutrition. The enzyme homogentisate phytyltransferase (HPT) performs the first committed step of the vitamin E biosynthetic pathway. The full-length cDNA encoding HPT was isolated from Lactuca sativa L. by rapid amplification of cDNA ends (RACE). The cDNA, designated as LsHPT, was 1,670 bp long containing an open reading frame (ORF) of 1,185 bp which encoded a protein of 395 amino acids. Sequence analysis indicated that the deduced protein, named as LsHPT, shared high identity with other dicotyledonous HPTs. Real-time fluorescent quantitative PCR (qPCR) analysis revealed that LsHPT was preferentially expressed in mature leaves compared with other tissues. When lettuce plants were subjected to drought and high-light stress treatments, LsHPT expression was markedly increased. Expression of LsHPT in Arabidopsis showed that LsHPT could enhance the α-tocopherol biosynthesis in Arabidopsis. Transient expression of LsHPT via agroinfiltration resulted in 9-fold increase in LsHPT mRNA level and nearly 18-fold enhancement in α-tocopherol content compared with the negative controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

HPT:

Homogentisate phytyltransferase

RACE:

Rapid amplification of cDNA ends

ORF:

Open reading frame

FW:

Fresh weight

PFD:

Photon flux density

HPLC:

High performance liquid chromatography

X-gluc:

5-Bromo-4-chloro-3-indolyl-β-d-glucuronic acid

GUS:

β-Glucuronidase

References

  1. Evans HM, Bishop KS (1922) On the existence of a hitherto unrecognized dietary factor essential for reproduction. Science 56:650–651

    Article  CAS  PubMed  Google Scholar 

  2. Rohmer M (2003) Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution. Pure Appl Chem 75:375–387

    Article  CAS  Google Scholar 

  3. Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotechnol 21:1082–1087

    Article  CAS  PubMed  Google Scholar 

  4. Weiser H, Riss G, Kormann AW (1996) Biodiscrimination of the eight alpha-tocopherol stereoisomers results in preferential accumulation of the four 2R forms in tissues and plasma of rats. J Nutr 126:2539–2549

    CAS  PubMed  Google Scholar 

  5. Eitenmiller RR (1997) Vitamin E content of fats and oils-nutritional implications. Food Technol 51:78–81

    CAS  Google Scholar 

  6. Schneider C (2004) Chemistry and biology of vitamin E. Mol Nutr Food Res 49:7–30

    Article  Google Scholar 

  7. Shintani D, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Article  CAS  PubMed  Google Scholar 

  8. Fryer MJ (1992) The antioxidant effects of thylakoid vitamin E (α-tocopherol). Plant Cell Environ 15:381–392

    Article  CAS  Google Scholar 

  9. Munné-Bosch S, Alegre L (2002) The Function of tocopherols and tocotrienols in plants. Crit Rev Plant Sci 21:31–57

    Google Scholar 

  10. Azzi A, Gysin R, Kempná P, Munteanu A, Negis Y, Villacorta L, Visarius T, Zingg JM (2004) Vitamin E mediates cell signaling and regulation of gene expression. Ann NY Acad Sci 1031:86–95

    Article  CAS  PubMed  Google Scholar 

  11. Zingg JM, Azzi A (2004) Non-antioxidant activities of vitamin E. Curr Med Chem 11:1113–1133

    CAS  PubMed  Google Scholar 

  12. Savidge B, Weiss JD, Wong YH, Lassner MW, Mitsky TA, Shewmaker CK, Post-Beittenmiller D, Valentin HE (2002) Isolation and characterization of homogentisate phytyltransferase genes from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 129:321–332

    Article  CAS  PubMed  Google Scholar 

  13. Schledz M, Seidler A, Beyer P, Neuhaus G (2001) A novel phytyltransferase from Synechocystis sp. PCC 6803 involved in tocopherol biosynthesis. FEBS Lett 499:15–20

    Article  CAS  PubMed  Google Scholar 

  14. Collakova E, DellaPenna D (2001) Isolation and functional analysis of homogentisate phytyltransferase from Synechocystis sp. PCC 6803 and Arabidopsis. Plant Physiol 127:1113–1124

    Article  CAS  PubMed  Google Scholar 

  15. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  16. Ausubel FM, Brent R, Kingston RE, Moore DD (2002) Short protocols in molecular biology, 5th edn. Wiley, Somerset

    Google Scholar 

  17. Liu Y, Schiff M, Dinesh-Kumar SP (2002) Virus-induced gene silencing in tomato. Plant J 31:777–786

    Article  CAS  PubMed  Google Scholar 

  18. Emanuelsson O, Nielsen H, Heijne G (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Prot Sci 8:978–984

    Article  CAS  Google Scholar 

  19. Soll J, Kemmerling M, Schultz G (1980) Tocopherol and plastoquinone synthesis in spinach chloroplasts subfractions. Arch Biochem Biophys 204:544–550

    Article  CAS  PubMed  Google Scholar 

  20. Soll J, Schultz G, Joyard J, Douce R, Block MA (1985) Localization and synthesis of prenylquinones in isolated outer and inner envelope membranes from spinach chloroplasts. Arch Biochem Biophys 238:290–299

    Article  CAS  PubMed  Google Scholar 

  21. Lopez JC, Ryan S, Blankenship RE (1996) Sequence of the bchG gene from Chloroflexus aurantiacus: relationship between chlorophyll synthase and other polyprenyltransferases. J Bacteriol 178:3369–3373

    CAS  PubMed  Google Scholar 

  22. Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  23. Foyer CH, Descourvières P, Kunert KJ (1994) Protection against oxygen radicals: an important defence mechanism studied in transgenic plants. Plant Cell Environ 17:507–523

    Article  CAS  Google Scholar 

  24. Collakova E, DellaPenna D (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131:632–642

    Article  CAS  PubMed  Google Scholar 

  25. Collakova E, DellaPenna D (2003) The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol 133:930–940

    Article  CAS  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by China “973” Program (grant number 2007CB108805) and Shanghai Leading Academic Discipline Project (project number B209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kexuan Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIFF 1986 kb)

Supplementary material 2 (TIFF 1786 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, W., Zhao, L., Zhang, L. et al. Molecular analysis of a homogentisate phytyltransferase gene from Lactuca sativa L.. Mol Biol Rep 38, 1813–1819 (2011). https://doi.org/10.1007/s11033-010-0297-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0297-6

Keywords

Navigation