Skip to main content
Log in

Calreticulin expression levels and endoplasmic reticulum during late oogenesis and early embryogenesis of Rhodnius prolixus Stahl

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

This study reports the cloning, expression analysis and localization of calreticulin (CRT) in the endoplasmic reticulum (ER) during late oogenesis and early embryogenesis of the insect Rhodnius prolixus. CRT was cloned and sequenced from cDNA extracted from unfertilized eggs. Real-time PCR showed that CRT expression remains at lower levels during late oogenesis when compared to vitellogenic oocytes or day 0 laid fertilized eggs. Immunofluorescence microscopy showed that this protein is located in the periphery of the egg, in a differential peripheral ooplasm surrounding the yolk-rich internal ooplasm, only identified by transmission electron microscopy (TEM) of thin sections. Using immunogold electron microscopy, the ER ultrastructure (CRT labeled) was identified in the peripheral ooplasm as dispersed lamellae, randomly distributed in the peripheral ooplasm. No massive alterations of ER ultrastructure were found before or right after (30 min) fertilization, but an increase in CRT expression levels and assembly of typical rough ER (parallel cisternae with associated ribosomes) were observed 18–24 h after oviposition. The lack of ER assembly at fertilization and the later formation of rough ER together with the increase in CRT expression levels, suggest that the major functions of ER might be of great importance during the early events of development. The possible involvement of ER in the early steps of embryogenesis will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kunkel JG, Nordin JH (1985) Yolk proteins: comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford

    Google Scholar 

  2. Raikhel AS, Dhadialla TS (1992) Accumulation of yolk proteins in insect oocytes. Annu Rev Entomol 37:217–251

    Article  CAS  PubMed  Google Scholar 

  3. Kerkut GG, Gilbert LG (1985) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford

    Google Scholar 

  4. Page AW, Orr-Weaver TL (1997) Stopping and starting the meiotic cell cycle. Curr Opin Genet Dev 7:23–31

    Article  CAS  PubMed  Google Scholar 

  5. Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86:25–88

    Article  CAS  PubMed  Google Scholar 

  6. Carafoli E, Santella L, Branca D, Brini M (2001) Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36:107–260

    Article  CAS  PubMed  Google Scholar 

  7. Terasaki M, Jaffe LA (1991) Organization of the sea urchin egg endoplasmic reticulum and its reorganization at fertilization. J Cell Biol 114:929–940

    Article  CAS  PubMed  Google Scholar 

  8. Terasaki M, Jaffe LA, Hunnicutt GR, Hammer JA 3rd (1996) Structural change of the endoplasmic reticulum during fertilization: evidence for loss of membrane continuity using the green fluorescent protein. Dev Biol 179:320–328

    Article  CAS  PubMed  Google Scholar 

  9. Bobinnec Y, Marcaillou C, Morin X, Debec A (2003) Dynamics of the endoplasmic reticulum during early development of Drosophila melanogaster. Cell Motil Cytoskeleton 54:217–225

    Article  PubMed  Google Scholar 

  10. McCauliffe DP, Yang YS, Wilson J, Sontheimer RD, Capra JD (1992) The 5’-flanking region of the human calreticulin gene shares homology with the human GRP78, GRP94, and protein disulfide isomerase promoters. J Biol Chem 267:2557–2562

    CAS  PubMed  Google Scholar 

  11. Gamo S, Dodo K, Matakatsu H, Tanaka Y (1998) Molecular genetical analysis of Drosophila ether sensitive mutants. Toxicol Lett 100–101:329–337

    Article  PubMed  Google Scholar 

  12. Gamo S, Tomida J, Dodo K, Keyakidani D, Matakatsu H et al (2003) Calreticulin mediates anesthetic sensitivity in Drosophila melanogaster. Anesthesiology 99:867–875

    Article  CAS  PubMed  Google Scholar 

  13. Michalak M, Groenendyk J, Szabo E, Gold LI, Opas M (2009) Calreticulin, a multi-process calcium-buffering chaperone of the endoplasmic reticulum. Biochem J 417:651–666

    Article  CAS  PubMed  Google Scholar 

  14. Michalak M, Mariani P, Opas M (1998) Calreticulin, a multifunctional Ca2+ binding chaperone of the endoplasmic reticulum. Biochem Cell Biol 76:779–785

    Article  CAS  PubMed  Google Scholar 

  15. Michalak M, Corbett EF, Mesaeli N, Nakamura K, Opas M (1999) Calreticulin: one protein, one gene, many functions. Biochem J 344(Pt 2):281–292

    Article  CAS  PubMed  Google Scholar 

  16. Stoltzfus JR, Horton WJ, Grotewiel MS (2003) Odor-guided behavior in Drosophila requires calreticulin. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 189:471–483

    Article  CAS  PubMed  Google Scholar 

  17. Zhang L, Wu G, Tate CG, Lookene A, Olivecrona G (2003) Calreticulin promotes folding/dimerization of human lipoprotein lipase expressed in insect cells (sf21). J Biol Chem 278:29344–29351

    Article  CAS  PubMed  Google Scholar 

  18. Asgari S, Schmidt O (2003) Is cell surface calreticulin involved in phagocytosis by insect hemocytes? J Insect Physiol 49:545–550

    Article  CAS  PubMed  Google Scholar 

  19. Johnson S, Michalak M, Opas M, Eggleton P (2001) The ins and outs of calreticulin: from the ER lumen to the extracellular space. Trends Cell Biol 11:122–129

    Article  CAS  PubMed  Google Scholar 

  20. Garcia ES, Macarini JD, Garcia ML, Ubatuba FB (1975) Feeding of Rhodnius prolixus in the laboratory. Anais da Academia Brasileira de Ciencias 47:537–545

    CAS  PubMed  Google Scholar 

  21. Fialho E, Silveira AB, Masuda H, Silva-Neto MA (2002) Oocyte fertilization triggers acid phosphatase activity during Rhodnius prolixus embryogenesis. Insect Biochem Mol Biol 32:871–880

    Article  CAS  PubMed  Google Scholar 

  22. Fialho E, Nakamura A, Juliano L, Masuda H, Silva-Neto MA (2005) Cathepsin D-mediated yolk protein degradation is blocked by acid phosphatase inhibitors. Arch Biochem Biophys 436:246–253

    Article  CAS  PubMed  Google Scholar 

  23. Heming BaH E (1994) Development of the germ cels and reproductive primordia in male and female embryos of Rhodnius prolixus Stahl (hemiptera: reduviidae). Can J Zool 72:1100–1119

    Article  Google Scholar 

  24. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  26. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  27. Berryman MA, Rodewald RD (1990) An enhanced method for post-embedding immunocytochemical staining which preserves cell membranes. J Histochem Cytochem 38:159–170

    CAS  PubMed  Google Scholar 

  28. Tutunco L, Stein P, Ord TS, Jorgez CJ, Willians CJ (2004) Calreticulin on the mouse egg surface mediates transmembrane signaling linked to cell cycle resumption. Dev Biol 270:246–260

    Article  Google Scholar 

  29. Gilbert SF (2000) Developmental Biology. Sinauer Associates, Inc, Sunderland

    Google Scholar 

  30. Kelly GH, Huebner E (1989) Embryonic development of the hemipteran insect Rhodnius prolixus. J Morphol 199:175–196

    Article  Google Scholar 

  31. Schier AF (2007) The maternal-zygotic transition: death and birth of RNAs. Science 316:406–407

    Article  CAS  PubMed  Google Scholar 

  32. Stitzel ML, Seydoux G (2007) Regulation of the oocyte-to-zygote transition. Science 316:407–408

    Article  CAS  PubMed  Google Scholar 

  33. Sardet C, Prodon F, Dumollard R, Chang P, Chenevert J (2002) Structure and function of the egg cortex from oogenesis through fertilization. Dev Biol 241:1–23

    Article  CAS  PubMed  Google Scholar 

  34. Heifetz Y, Yu J, Wolfner MF (2001) Ovulation triggers activation of Drosophila oocytes. Dev Biol 234:416–424

    Article  CAS  PubMed  Google Scholar 

  35. Horner VL, Czank A, Jang JK, Singh N, Williams BC et al (2006) The Drosophila calcipressin sarah is required for several aspects of egg activation. Curr Biol 16:1441–1446

    Article  CAS  PubMed  Google Scholar 

  36. Takeo S, Tsuda M, Akahori S, Matsuo T, Aigaki T (2006) The calcineurin regulator sra plays an essential role in female meiosis in Drosophila. Curr Biol 16:1435–1440

    Article  CAS  PubMed  Google Scholar 

  37. Horner VL, Wolfner MF (2008) Mechanical stimulation by osmotic and hydrostatic pressure activates Drosophila oocytes in vitro in a calcium-dependent manner. Dev Biol 316:100–109

    Article  CAS  PubMed  Google Scholar 

  38. Ramos IB, Miranda K, de Souza W, Oliveira DM, Lima AP et al (2007) Calcium-regulated fusion of yolk granules is important for yolk degradation during early embryogenesis of Rhodnius prolixus Stahl. J Exp Biol 210:138–148

    Article  CAS  PubMed  Google Scholar 

  39. Schroder R (2003) The genes orthodenticle and hunchback substitute for bicoid in the beetle Tribolium. Nature 422:621–625

    Article  PubMed  Google Scholar 

  40. Liu PZ, Kaufman TC (2005) Short and long germ segmentation: unanswered questions in the evolution of a developmental mode. Evol Dev 7:629–646

    Article  PubMed  Google Scholar 

  41. Edgar BA, Schubiger G (1986) Parameters controlling transcriptional activation during early Drosophila development. Cell 44:871–877

    Article  CAS  PubMed  Google Scholar 

  42. Parry H, McDougall A, Whitaker M (2005) Microdomains bounded by endoplasmic reticulum segregate cell cycle calcium transients in syncytial Drosophila embryos. J Cell Biol 171:47–59

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Francisco G. Nobrega and Kildare Miranda. This study was supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq/Brazil), Fundação Carlos Chagas Filho de Amparo à Pesquisa no Estado do Rio de Janeiro (FAPERJ), Programa Pensa Rio, Programa de Pesquisadores Emergentes, Programa de Apoio ao Desenvolvimento Científico e Tecnológico (PADCT), and FINEP/PRONEX/FUJB no. 76.97.1000.000 (to EAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ednildo A. Machado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramos, I.B., Campos, C.B.L., Sorgine, M.H.F. et al. Calreticulin expression levels and endoplasmic reticulum during late oogenesis and early embryogenesis of Rhodnius prolixus Stahl. Mol Biol Rep 38, 1757–1767 (2011). https://doi.org/10.1007/s11033-010-0290-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0290-0

Keywords

Navigation