Skip to main content
Log in

Expression and identification of a thermostable malate dehydrogenase from multicellular prokaryote Streptomyces avermitilis MA-4680

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A malate dehydrogenase (MDH) from Streptomyces avermitilis MA-4680 (SaMDH) has been expressed and purified as a fusion protein. The molecular mass of SaMDH is about 35 kDa determined by SDS-PAGE. The recombinant SaMDH has a maximum activity at pH 8.0. The enzyme shows the optimal temperature around 42°C and displays a half-life (t 1/2) of 160 min at 50°C which is more thermostable than reported MDHs from most bacteria and fungi. The k cat value of SaMDH is about 240-fold of that for malate oxidation. In addition, the k cat/K m ratio shows that SaMDH has about 1,246-fold preference for oxaloacetate (OAA) reduction over l-malate oxidation. The recombinant SaMDH may also use NADPH as a cofactor although it is a highly NAD(H)-specific enzyme. There was no activity detected when malate and NADP+ were used as substrates. Substrate inhibition studies show that SaMDH activity is strongly inhibited by excess OAA with NADH, but is not sensitive to excess l-malate. Enzymatic activity is enhanced by the addition of Na+, NH4 +, Ca2+, Cu2+ and Mg2+ and inhibited by addition of Hg2+ and Zn2+. MDH is widely used in coenzyme regeneration, antigen immunoassays and bioreactors. The enzymatic analysis could provide the important basic knowledge for its utilizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Satoshi H, Motohashi K, Arisaka F, Romano PGN, Hosoya-Matsuda N, Kikuchi N, Fusada N, Hisabori T (2006) Thioredoxin-h1 reduces and reactivates the oxidized cytosolic malate dehydrogenase dimer in higher plants. J Biol Chem 281:32065–32071

    Article  Google Scholar 

  2. Mikulášová D, Tomášková N, Maderová J, Kollárová M (2006) Crystallization and preliminary diffraction studies of malate dehydrogenase from Streptomyces aureofaciens. Protein Pept Lett 13:207–210

    Article  PubMed  Google Scholar 

  3. Tomita T, Fushinobu S, Kuzuyama T, Nishiyama M (2005) Crystal structure of NAD-dependent malate dehydrogenase complexed with NADP(H). Biochem Biophys Res Commun 334:613–618

    Article  CAS  PubMed  Google Scholar 

  4. Easlon E, Tsang F, Skinner C, Wang C, Lin SJ (2008) The malate-aspartate NADH shuttle components are novel metabolic longevity regulators required for calorie restriction-mediated life span extension in yeast. Genes Dev 22:931–944

    Article  CAS  PubMed  Google Scholar 

  5. Lee SM, Kim JH, Cho EJ, Youn HD (2009) A nucleocytoplasmic malate dehydrogenase regulates p53 transcriptional activity in response to metabolic stress. Cell Death Differ 16:738–748

    Article  CAS  PubMed  Google Scholar 

  6. Carr PD, Verger D, Ashton AR, Ollis DL (1999) Chloroplast NADP-malate dehydrogenase: structural basis of light-dependent regulation of activity by thiol oxidation and reduction. Structure 7:461–475

    Article  CAS  PubMed  Google Scholar 

  7. Ocheretina O, Haferkamp I, Tellioglu H, Scheibe R (2000) Light-modulated NADP-malate dehydrogenases from mossfern and green algae: insights into evolution of the enzyme’s regulation. Gene 258:147–154

    Article  CAS  PubMed  Google Scholar 

  8. Genda T, Nakamatsu T, Ozaki H (2003) Purification and characterization of malate dehydrogenase from Corynebacterium glutamicum. J Biosci Bioeng 95:562–566

    CAS  PubMed  Google Scholar 

  9. Tomita T, Fushinobu S, Kuzuyama T, Nishiyama M (2006) Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant. Biochem Biophys Res Commun 347:502–508

    Article  CAS  PubMed  Google Scholar 

  10. Yennaco LJ, Hu Y, Holden JF (2007) Characterization of malate dehydrogenase from the hyperthermophilic archaeon Pyrobaculum islandicum. Extremophiles 11:741–746

    Article  CAS  PubMed  Google Scholar 

  11. Maloney AP, Callan SM, Murray PG, Tuohy MG (2004) Mitochondrial malate dehydrogenase from the thermophilic, filamentous fungus Talaromyces emersonii. Eur J Biochem 271:3115–3126

    Article  CAS  PubMed  Google Scholar 

  12. López-Calcagno PE, Moreno J, Cedeño L, Labrador L, Concepción JL, Avilán L (2009) Cloning, expression and biochemical characterization of mitochondrial and cytosolic malate dehydrogenase from Phytophthora infestans. Mycol Res 113(6–7):771–781

    Article  PubMed  Google Scholar 

  13. Ding Y, Ma QH (2004) Characterization of a cytosolic malate dehydrogenase cDNA which encodes an isozyme toward oxaloacetate reduction in wheat. Biochimie 86:509–518

    Article  CAS  PubMed  Google Scholar 

  14. Cousins AB, Pracharoenwattana I, Zhou W, Smith SM, Badger MR (2008) Peroxisomal malate dehydrogenase is not essential for photorespiration in Arabidopsis but its absence causes an increase in the stoichiometry of photorespiratory CO2 release. Plant Physiol 148:786–795

    Article  CAS  PubMed  Google Scholar 

  15. Cuevas IC, Podesta FE (2000) Purification and physical and kinetic characterization of an NAD+-dependent malate dehydrogenase from leaves of pineapple (Ananas comosus). Physiol Plant 108:240–248

    Article  CAS  Google Scholar 

  16. Agüero F, Noé G, Hellman U, Repetto Y, Zaha A, Cazzulo JJ (2004) Purification, cloning, and expression of the mitochondrial malate dehydrogenase (mMDH) from protoscolices of Echinococcus granulosus. Mol Biochem Parasitol 137:207–214

    Article  PubMed  Google Scholar 

  17. Chapman AD, Cortés A, Dafforn TR, Clarke AR, Brady RL (1999) Structural basis of substrate specificity in malate dehydrogenases: crystal structure of a ternary complex of porcine cytoplasmic malate dehydrogenase, alpha-ketomalonate and tetrahydoNAD. J Mol Biol 285:703–712

    Article  CAS  PubMed  Google Scholar 

  18. Roderick SL, Banaszak LJ (1986) The three dimensional structure of porcine heart mitochondrial malate dehydrogenase at 3.0 Å resolution. J Biol Chem 261:9461–9464

    CAS  PubMed  Google Scholar 

  19. Cox B, Chit MM, Weaver T, Gietl C, Bailey J, Bell E, Banaszak L (2005) Organelle and translocatable forms of glyoxysomal malate dehydrogenase: the effect of the N-terminal presequence. FEBS J 272:643–654

    Article  CAS  PubMed  Google Scholar 

  20. Johansson K, Ramaswamy S, Saarinen M, Lemaire-Chamley M, Issakidis-Bourguet E, Miginiac-Maslow M, Eklund H (1999) Structural basis for light activation of a chloroplast enzyme: the structure of Sorghum NADP-malate dehydrogenase in its oxidized form. Biochemistry 38:4319–4326

    Article  CAS  PubMed  Google Scholar 

  21. Richard SB, Madern D, Garcin E, Zaccai G (2000) Halophilic adaptation: novel solvent protein interactions observed in the 2.9 and 2.6 Å resolution structures of the wild type and a mutant of malate dehydrogenase from Haloarcula marismortui. Biochemistry 39:992–1000

    Article  CAS  PubMed  Google Scholar 

  22. Irimia A, Vellieux FMD, Madern D, Zaccai G, Karshikoff A, Tibbelin G, Ladenstein R, Lien T, Birkeland NK (2004) The 2.9 Å resolution crystal structure of malate dehydrogenase from Archaeoglobus fulgidus: mechanisms of oligomerisation and thermal stabilization. J Mol Biol 335:343–356

    Article  CAS  PubMed  Google Scholar 

  23. Kawakami R, Sakuraba H, Goda S, Tsuge H, Ohshima T (2009) Refolding, characterization and crystal structure of (S)-malate dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix. Biochim Biophys Acta 1794(10):1496–1504

    CAS  PubMed  Google Scholar 

  24. Zaitseva J, Meneely KM, Lamb AL (2009) Structure of Escherichia coli malate dehydrogenase at 1.45 Å resolution. Acta Crystallogr F 65:866–869

    Article  Google Scholar 

  25. Kelly CA, Nishiyama M, Ohnishi Y, Beppu T, Birktoft JJ (1993) Determinants of protein thermostability observed in the 1.9 Å crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. Biochemistry 32:3913–3922

    Article  CAS  PubMed  Google Scholar 

  26. Kim SY, Hwang KY, Kim SH, Sung HC, Han YS, Cho Y (1999) Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274:11761–11767

    Article  CAS  PubMed  Google Scholar 

  27. Madern D (2002) Molecular evolution within the l-malate and l-lactate dehydrogenase super-family. J Mol Evol 54:825–840

    Article  CAS  PubMed  Google Scholar 

  28. Madern D, Cai XM, Abrahamsen MS, Zhu G (2004) Evolution of Cryptosporidium parvum lactate dehydrogenase from malate dehydrogenase by a very recent event of gene duplication. Mol Biol Evol 21:489–497

    Article  CAS  PubMed  Google Scholar 

  29. Yin Y, Kirsch JF (2007) Identification of functional paralog shift mutations: conversion of Escherichia coli malate dehydrogenase to a lactate dehydrogenase. Proc Natl Acad Sci USA 104:17353–17357

    Article  CAS  PubMed  Google Scholar 

  30. Wilks HM, Hart KW, Feeney R, Dunn CR, Muirhead H, Chia WN, Barstow DA, Atkinson T, Clarke AR, Holbrook JJ (1988) A specific, highly active malate dehydrogenase by redesign of a lactate dehydrogenase framework. Science 242:1541–1544

    Article  CAS  PubMed  Google Scholar 

  31. Ohnishi Y, Ishikawa J, Hara H, Suzuki H, Ikenoya M, Ikeda H, Yamashita A, Hattori M, Horinouchi S (2008) Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J Bacteriol 190:4050–4060

    Article  CAS  PubMed  Google Scholar 

  32. Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Ômura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  33. Bentley SD, Chater KF, Cerdeño-Tárraga AM, Challis GL, Thomson NR, James KD, Harris DE, Quail MA, Kieser H, Harper D, Bateman A, Brown S, Chandra G, Chen CW, Collins M, Cronin A, Fraser A, Goble A, Hidalgo J, Hornsby T, Howarth S, Huang CH, Kieser T, Larke L, Murphy L, Oliver K, ONeil S, Rabbinowitsch E, Rajandream MA, Rutherford K, Rutter S, Seeger K, Saunders D, Sharp S, Squares R, Squares S, Taylor K, Warren T, Wietzorrek A, Woodward J, Barrell BG, Parkhill J, Hopwood DA (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3 (2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  34. Hopwood DA, Bibb MJ, Chater KF, Kieser T, Bruton C, Kieser H, Lydiate D, Smith C, Ward J, Schrempf H (1985) Genetic manipulation of Streptomyces: a laboratory manual. The John Innes Foundation, Norwich

    Google Scholar 

  35. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  36. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace LM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  37. Gouet P, Courcelle E, Stuart DI, Métoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  CAS  PubMed  Google Scholar 

  38. Mikulášová D, Kollárová M, Miginiac-Maslow M, Decottignies P, Jacquot J, Kutejová E, Mernik N, Egyudová I, Musrati R, Horecká T (1998) Purification and characterization of the malate dehydrogenase from Streptomyces aureofaciens. FEMS Microbiol Lett 159:299–305

    Article  PubMed  Google Scholar 

  39. Tomita T, Kuzuyama T, Nishiyama M (2006) Alteration of coenzyme specificity of lactate dehydrogenase from Thermus thermophilus by introducing the loop region of NADP(H)-dependent malate. Biosci Biotechnol Biochem 70:2230–2235

    Article  CAS  PubMed  Google Scholar 

  40. Nishiyama M, Birktoft JJ, Beppu T (1993) Alteration of coenzyme specificity of malate dehydrogenase from Thermus flavus by site-directed mutagenesis. J Biol Chem 268:4656–4660

    CAS  PubMed  Google Scholar 

  41. Oikawa T, Yamamoto N, Shimoke K, Uesato S, Ikeuchi T, Fukioka T (2005) Purification, characterization, and overexpression of psychrophilic and thermolabile malate dehydrogenase of a novel antarctic psychrotolerant, Flavobacterium frigidimarinis KUC-1. Biosci Biotechnol Biochem 69:2146–2154

    Article  CAS  PubMed  Google Scholar 

  42. Trípodi KEJ, Podestá FE (2003) Purification and characterization of an NAD-dependent malate dehydrogenase from leaves of the crassulacean acid metabolism plant Aptenia cordifolia. Plant Physiol Biochem 41:97–105

    Article  Google Scholar 

  43. Madern D, Zaccai G (2004) Molecular adaptation: the malate dehydrogenase from the extreme halophilic bacterium Salinibacter ruber behaves like a non-halophilic protein. Biochimie 86:295–303

    Article  CAS  PubMed  Google Scholar 

  44. Wali AS, Mattoo AK (1984) Malate dehydrogenase from thermophilic Humicola lanuginosa and Mucor pusillus: purification and comparative properties of the enzymes with differing thermostabilities. Biochem Cell Biol 62:559–565

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by funds from the National Natural Science Foundation of China (30500300; 30870062; 30900243), New Century Excellent Talents in University of the Education Ministry of China (NCET-06-0558), Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, the Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province and Program for Innovative Research Team in Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Ping Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, ZD., Wang, BJ., Ge, YD. et al. Expression and identification of a thermostable malate dehydrogenase from multicellular prokaryote Streptomyces avermitilis MA-4680. Mol Biol Rep 38, 1629–1636 (2011). https://doi.org/10.1007/s11033-010-0273-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0273-1

Keywords

Navigation