Skip to main content

Advertisement

Log in

Effect of NAT2 gene polymorphism on bladder cancer risk in Slovak population

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

N-acetyltransferase 2 (NAT2) is phase II enzyme with major roles in catalyzing the detoxification of aromatic amines, which are known risk factors for bladder cancer, and are ubiquitously present in the environment. We assessed the association between common polymorphisms in NAT2 gene and the risk of bladder cancer in 90 Slovak patients and 274 ethnicity-matched healthy controls. Effect modifications by smoking, age and gender were also evaluated. Overall, NAT2 slow acetylation was associated with significantly increased risk of bladder cancer (OR = 1.90; 95% CI, 1.15–3.16). In stratified analyses by age and gender, the elevated risk conferred by slow acetylator genotype was evident in older individuals (OR = 3.55; 95% CI, 1.77–7.35) and males (OR = 4.65; 95% CI, 1.68–16.10), with further increasing in NAT2*5B/*6A genotype carriers. Smoking was confirmed to be important risk factor, moreover, the risk was markedly increased in smokers with NAT2 slow acetylator genotype, and NAT2*5B/*6A carriers especially. In summary, these findings are consistent with previous literature suggesting that individual susceptibility to bladder cancer may be modulated by NAT2 polymorphisms, particularly in interaction with relevant environmental exposures such as smoking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ECO/OEC European Cancer Observatory, Observatoire Européen du Cancer (2009) International Agency for Research on Cancer, Lyon. http://eu-cancer.iarc.fr

  2. Silverman DT, Morrison AS, Devesa SS (1996) Bladder cancer. In: Schottenfeld D, Fraumeni JF Jr (eds) Cancer epidemiology and prevention. Oxford University Press, New York, pp 1156–1179

    Google Scholar 

  3. Hecht SS (1999) Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst 91:1194–1210

    Article  CAS  PubMed  Google Scholar 

  4. Blum M, Grant DM, Mcbride W, Heim M, Meyer UA (1990) Human arylamine N-acetyltransferase genes: isolation, chromosomal localization, and functional expression. DNA Cell Biol 9:193–203

    Article  CAS  PubMed  Google Scholar 

  5. Cascorbi I, Drakoulis N, Brockmöller J, Maurer A, Sperling K, Roots I (1995) Arylamine N-acetyltransferase (NAT2) mutations and their allelic linkage in unrelated Caucasian individuals: correlation with phenotypic activity. Am J Hum Genet 57:581–592

    CAS  PubMed  Google Scholar 

  6. Ross RK, Jones PA, Yu MC (1996) Bladder cancer epidemiology and pathogenesis. Semin Oncol 23:536–545

    CAS  PubMed  Google Scholar 

  7. Lower GM Jr, Nilsson T, Nelson CE, Wolf H, Gamsky TE, Bryan GT (1979) N-acetyltransferase phenotype and risk in urinary bladder cancer: approaches in molecular epidemiology. Preliminary results in Sweden and Denmark. Environ Health Perspect 29:71–79

    Article  CAS  PubMed  Google Scholar 

  8. Marcus PM, Vineis P, Rothman N (2000) NAT2 slow acetylation and bladder cancer risk: a meta-analysis of 22 case-control studies conducted in the general population. Pharmacogenetics 10:115–122

    Article  CAS  PubMed  Google Scholar 

  9. Okkels H, Sigsgaard T, Wolf H, Autrup H (1997) Arylamine N-acetyltransferase 1 (NAT1) and 2 (NAT2) polymorphisms in susceptibility to bladder cancer: the influence of smoking. Cancer Epidemiol Biomarkers Prev 6:225–231

    CAS  PubMed  Google Scholar 

  10. Garte S, Gaspari L, Alexandrie AK, Ambrosone C, Autrup H et al (2001) Metabolic gene polymorphism frequencies in control populations. Cancer Epidemiol Biomarkers Prev 10:1239–1248

    CAS  PubMed  Google Scholar 

  11. Dong LM, Potter JD, White E, Ulrich CM, Cardon LR, Peters U (2008) Genetic susceptibility to cancer: the role of polymorphisms in candidate genes. JAMA 299:2423–2436

    Article  CAS  PubMed  Google Scholar 

  12. Vineis P, Bartsch H, Caporaso N, Harrington AM, Kadlubar FF et al (1994) Genetically based N-acetyltransferase metabolic polymorphism and low-level environmental exposure to carcinogens. Nature 369:154–156

    Article  CAS  PubMed  Google Scholar 

  13. Yu MC, Skipper PL, Taghizadeh K, Tannenbaum SR, Chan KK et al (1994) Acetylator phenotype, aminobiphenyl-hemoglobin adduct levels, and bladder cancer risk in white, black and asian men in Los Angeles, California. J Natl Cancer Inst 86:712–716

    Article  CAS  PubMed  Google Scholar 

  14. Garcia-Closas M, Malats N, Silverman D, Dosemeci M, Kogevinas M et al (2005) NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 366:649–659

    Article  CAS  PubMed  Google Scholar 

  15. Marcus PM, Hayes RB, Vineis P, Garcia-Closas M, Caporaso NE et al (2000) Cigarette smoking, N-acetyltransferase 2 acetylation status, and bladder cancer risk: a case-series meta-analysis of a gene-environment interaction. Cancer Epidemiol Biomarkers Prev 9:461–467

    CAS  PubMed  Google Scholar 

  16. Vineis P, Marinelli D, Autrup H, Brockmöller J, Cascorbi I et al (2001) Current smoking, occupation, N-acetyltransferase-2 and bladder cancer: a pooled analysis of genotype-based studies. Cancer Epidemiol Biomarkers Prev 10:1249–1252

    CAS  PubMed  Google Scholar 

  17. Green J, Banks E, Berrington A, Darby S, Deo H, Newton R (2000) N-acetyltransferase 2 and bladder cancer: an overview and consideration of the evidence for gene-environment interaction. Br J Cancer 83:412–417

    Article  CAS  PubMed  Google Scholar 

  18. Gu J, Liang D, Wang Y, Lu C, Wu X (2005) Effects of N-acetyl transferase 1 and 2 polymorphisms on bladder cancer risk in Caucasians. Mutat Res 581:97–104

    CAS  PubMed  Google Scholar 

  19. Bryan RT, Hussain SA, James ND, Jankowski JA, Wallace MA (2005) Molecular pathways in bladder cancer: part 1. BJU Int 95:485–490

    Article  CAS  PubMed  Google Scholar 

  20. Kellen E, Zeegers M, Paulussen A, Vlietinck R, Vlem EV et al (2007) Does occupational exposure to PAHs, diesel and aromatic amines interact with smoking and metabolic genetic polymorphisms to increase the risk of bladder cancer? The Belgian case control study on bladder cancer. Cancer Lett 245:51–60

    Article  CAS  PubMed  Google Scholar 

  21. Mcgrath M, Michaud D, De Vivo I (2006) Polymorphisms in GSTT1, GSTM1, NAT1 and NAT2 genes and bladder cancer risk in men and women. BMC Cancer 6:239

    Article  PubMed  Google Scholar 

  22. Zhao H, Lin J, Grossman JB, Hernandez LM, Dinney CP, Wu X (2007) Dietary isothiocyanates, GSTM1, GSTT1, NAT2 polymorphisms and bladder cancer risk. Int J Cancer 120:2208–2213

    Article  CAS  PubMed  Google Scholar 

  23. Brockmöller J, Cascorbi I, Kerb R, Roots I (1996) Combined analysis of inherited polymorphisms in arylamine N-acetyltransferase 2, glutathione S-transferases M1 and T1, microsomal epoxide hydrolase, and cytochrome P450 enzymes as modulators of bladder cancer risk. Cancer Res 56:3915–3925

    PubMed  Google Scholar 

  24. Filiadis IF, Georgiou I, Alamanos Y, Kranas V, Giannakopoulos X et al (1999) Genotypes of N-acetyltransferase-2 and risk of bladder cancer: a case-control study. J Urol 161:1672–1675

    Article  CAS  PubMed  Google Scholar 

  25. Vaziri SAJ, Hughes NC, Sampson H, Darlington G, Jewett MAS, Grant DM (2001) Variation in enzymes of arylamine procarcinogen biotransformation among bladder cancer patients and control subjects. Pharmacogenetics 11:7–20

    Article  CAS  PubMed  Google Scholar 

  26. Zang Y, Zhao S, Doll MA, States JC, Hein DW (2004) The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation. Pharmacogenetics 14:717–723

    Article  CAS  PubMed  Google Scholar 

  27. Schnakenberg E, Lustig M, Breuer R, Werdin R, Hübotter R et al (2000) Gender-specific effects of NAT2 and GSTM1 in bladder cancer. Clin Genet 57:270–277

    Article  CAS  PubMed  Google Scholar 

  28. Heinx Hein (2006) N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk. Oncogene 25:1649–1658

    Article  Google Scholar 

  29. Taylor JA, Umbach DM, Stephens E, Castranio T, Paulson D et al (1998) The role of N-acetylation polymorphisms in smoking-associated bladder cancer: evidence of a gene-gene-exposure three-way interaction. Cancer Res 58:3603–3610

    CAS  PubMed  Google Scholar 

  30. Lang NP, Kadlubar FF (1991) Aromatic and heterocyclic amine metabolism and phenotyping in humans. Prog Clin Biol Res 372:33–47

    CAS  PubMed  Google Scholar 

  31. Kadlubar FF, Badawi AF (1995) Genetic susceptibility and carcinogen-DNA adduct formation in human urinary bladder carcinogenesis. Toxicol Lett 825:627–632

    Article  Google Scholar 

  32. Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ et al (2000) Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev 9:29–42

    CAS  PubMed  Google Scholar 

  33. Badawi AF, Hirvonen A, Bell DA, Lang NP, Kadlubar FF (1995) Role of aromatic amine acetyltransferases, NAT1 and NAT2, in carcinogen-DNA adduct formation in the human urinary bladder. Cancer Res 55:5230–5237

    CAS  PubMed  Google Scholar 

  34. Cascorbi I, Roots I, Brockmöller J (2001) Association of NAT1 and NAT2 polymorphisms to urinary bladder cancer: significantly reduced risk in subjects with NAT1*10. Cancer Res 61:5051–5056

    CAS  PubMed  Google Scholar 

  35. Bell DA, Badawi AF, Lang NP, Ilett KF, Kadlubar FF, Hirvonen A (1995) Polymorphism in the NAT1 polyadenylation signal: association of NAT1*10 allele with higher N-acetylation activity in bladder and colon tissue samples. Cancer Res 55:5226–5229

    CAS  PubMed  Google Scholar 

  36. Sanderson S, Salanti G, Higgins J (2007) Joint effects of the N-Acetyltransferase 1 and 2 (NAT1 and NAT2) genes and smoking on bladder carcinogenesis: a literature-based systematic HuGE review and evidence synthesis. Am J Epidemiol 166:741–751

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the project “Network of Excellent Laboratories for Oncology”, Operational Program of Research and Development financed by European Fund for Regional Development. SEPO, Contract No: 007/2009/2.1/. The authors thank Dr. Martin Javorský (4th Department of Medicine, P.J. Šafárik University, L. Pasteur Teaching Hospital, Košice) for his assistance in statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jozef Židzik.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klimčáková, L., Habalová, V., Sivoňová, M. et al. Effect of NAT2 gene polymorphism on bladder cancer risk in Slovak population. Mol Biol Rep 38, 1287–1293 (2011). https://doi.org/10.1007/s11033-010-0228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0228-6

Keywords

Navigation