Skip to main content
Log in

Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The plant hormone auxin transcriptionally activates Aux/IAA genes. Auxin plays an important role in regulating fruit growth and ripening of strawberry and Aux/IAA genes have been extensively studied in Arabidopsis, rice and tomato, but little information is available on strawberry fruit. In the present work, two full-length of early auxin-responsive Aux/IAA genes, termed FaAux/IAA1 and FaAux/IAA2 respectively, were isolated and characterized from strawberry fruit. Moreover, the expression profiles of two FaAux/IAA genes during fruit development, and the effect of naphthalene acetic acid (NAA) on their expressions of fruits at two different developmental stages were also investigated. The results showed that the levels of FaAux/IAA1 and FaAux/IAA2 transcripts were very high at early stage of fruit development, and decreased sharply at ripening stage (after white stage). In addition, NAA applied at the stage of large green and white fruit obviously increased the accumulations of FaAux/IAA1 and FaAux/IAA2 transcripts. These data suggested that the expressions of both FaAux/IAA1 and FaAux/IAA2 genes were likely to be involved in early fruit development, and the enhancement of FaAux/IAAs transcripts might be attributed at least or partially to auxin-induced fruit growth and delayed fruit ripening of strawberry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Friml J (2003) Auxin transport-shaping the plant. Curr Opin Plant Biol 6:7–12

    Article  CAS  PubMed  Google Scholar 

  2. Quint M, Gray WM (2006) Auxin signaling. Curr Opin Plant Biol 9:448–453

    Article  CAS  PubMed  Google Scholar 

  3. Guilfoyle TJ (1999) Auxin-regulated genes and promoters. In: Hooykaas PJJ, Hall M, Libbenga KL (eds) Biochemistry and molecular biology of plant hormones. Elsevier, Leiden, pp 423–459

    Chapter  Google Scholar 

  4. Zhang JH, Chen RG, Xiao JH, Zou LP, Li HX, Ouyang B, Ye ZB (2007) Isolation and characterization of SlIAA3, an Aux/IAA gene from tomato. Mitochondrial DNA 18:407–414

    CAS  Google Scholar 

  5. Zhang JH, Chen RG, Xiao JH, Qian CJ, Wang TT, Li HX, Ouyang B, Ye ZB (2007) A single-base deletion mutation in SlIAA9 gene causes tomato (Solanum lycopersicum) entire mutant. J Plant Res 120:671–678

    Article  CAS  PubMed  Google Scholar 

  6. Benjamins R, Scheres B (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol 59:443–465

    Article  CAS  PubMed  Google Scholar 

  7. Mockaitis K, Estelle M (2008) Auxin receptors and plant development: a new signaling paradigm. Annu Rev Cell Dev Biol 24:55–80

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Tian CE, Duan J, Wu KQ (2008) Research progresses on GH3 s, one family of primary auxin-responsive genes. Plant Growth Regul 56:225–232

    Article  CAS  Google Scholar 

  9. Tian Q, Uhlir NJ, Reed JW (2002) Arabidopsis SHY2/IAA3 inhibits auxin-regulated gene expression. Plant Cell 14:301–319

    Article  CAS  PubMed  Google Scholar 

  10. Walker JC, Key JL (1982) Isolation of cloned cDNAs to auxin responsive poly (A) RNAs of elongating soybean hypocotyls. Proc Natl Acad Sci USA 79:7185–7189

    Article  CAS  PubMed  Google Scholar 

  11. Ainley WM, Walker JC, Nagao RT, Key JL (1988) Sequence and characterization of two auxin-regulated genes from soybean. J Biol Chem 263:10658–10666

    CAS  PubMed  Google Scholar 

  12. Theologis A, Huynh TV, Davis RW (1985) Rapid induction of specific mRNAs by auxin in pea epicotyl tissue. J Mol Biol 183:53–68

    Article  CAS  PubMed  Google Scholar 

  13. Abel S, Theologis A (1995) A polymorphic bipartite motif signals nuclear targeting of early auxin-inducible proteins related to PS-IAA4 from pea (Pisum sativum). Plant J 8:87–96

    Article  CAS  PubMed  Google Scholar 

  14. Dharmasiri N, Estelle M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9:302–308

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto KT, Mori H, Imaseki H (1992) cDNA cloning of indole-3-acetic acid regulated genes: Aux22 and SAUR from mung bean (Vigna radiata) hypocotyls tissue. Plant Cell Physiol 33:93–97

    CAS  Google Scholar 

  16. Thakur JK, Tyagi AK, Khurana JP (2001) OsIAA1, an Aux/IAA cDNA from rice, and changes in its expression as influenced by auxin and light. DNA Res 8:193–203

    Article  CAS  PubMed  Google Scholar 

  17. Thakur JK, Jain M, Tyagi AK, Khurana JP (2005) Exogenous auxin enhances the degradation of a light down-regulated and nuclear-localized OsiIAA1, an Aux/IAA protein from rice, via proteasome. Biochim Biophys Acta 1730:196–205

    CAS  PubMed  Google Scholar 

  18. Jain M, Kaur N, Garg R, Thakur JK, Tyagi AK, Khurana JP (2006) Structure and expression analysis of early auxin-responsive Aux/IAA gene family in rice (Oryza sativa). Funct Integr Genomics 6:47–59

    Article  CAS  PubMed  Google Scholar 

  19. Nebenfuhr A, White TJ, Lomax TL (2000) The diageotropica mutation alters auxin induction of a subset of the Aux/IAA gene family in tomato. Plant Mol Biol 44:73–84

    Article  CAS  PubMed  Google Scholar 

  20. Wang H, Jones B, Li ZG, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  CAS  PubMed  Google Scholar 

  21. Abel S, Oeller PW, Theologis A (1994) Early auxin-induced genes encode short-lived nuclear proteins. Proc Natl Acad Sci USA 91:326–330

    Article  CAS  PubMed  Google Scholar 

  22. Nitsch JP (1950) Growth and morphogenesis of the strawberry as related to auxin. Am J Bot 37:211–215

    Article  CAS  Google Scholar 

  23. Given NK, Venis MA, Grierson D (1988) Hormonal regulation of ripening in the strawberry, a non-climacteric fruit. Planta 174:402–406

    Article  CAS  Google Scholar 

  24. Medina-Escobar N, Cárdenas J, Valpuesta V, Muñoz-Blanco J, Caballero JL (1997) Cloning and characterization of cDNAs from genes differentially expressed during the strawberry fruit ripening process by a MAST-PCR-SBDS method. Anal Biochem 248:288–296

    Article  CAS  PubMed  Google Scholar 

  25. Manning K (1994) Changes in gene expression during strawberry fruit ripening and their regulation by auxin. Planta 194:62–68

    Article  CAS  Google Scholar 

  26. Manning K (1998) Isolation of a set of ripening-related genes from strawberry: their identification and possible relationship to fruit quality traits. Planta 205:622–631

    Article  CAS  PubMed  Google Scholar 

  27. Bustamante CA, Civello PM, Martínez GA (2009) Cloning of the promoter region of β-xylosidase (FaXyl1) gene and effect of plant growth regulators on the expression of FaXyl1 in strawberry fruit. Plant Sci 177:49–56

    Article  CAS  Google Scholar 

  28. Rosli HG, Civello PM, Martínez GA (2009) a-L-Arabinofuranosidase from strawberry fruit: cloning of three cDNAs, characterization of their expression and analysis of enzymatic activity in cultivars with contrasting firmness. Plant Physiol Biochem 47:272–281

    Article  CAS  PubMed  Google Scholar 

  29. Wills RBH, Kim GH (1995) Effect of ethylene on postharvest life of strawberries. Postharvest Biol Technol 6:249–255

    Article  CAS  Google Scholar 

  30. Tian MS, Prakash S, Elgar HJ, Young H, Burmeister DM, Ross GS (2000) Responses of strawberry fruit to 1-methylcyclopropene (1-MCP) and ethylene. Plant Growth Regul 32:83–90

    Article  CAS  Google Scholar 

  31. Trainotti L, Pavanello A, Casadoro G (2005) Different ethylene receptors show an increased expression during the ripening of strawberries: does such an increment imply a role for ethylene in the ripening of these non-climacteric fruits? J Exp Bot 56:2037–2046

    Article  CAS  PubMed  Google Scholar 

  32. Iannetta PPM, Laarhoven LJ, Medina-Escobar N, James EK, McManus MT, Davies HV, Harren FJM (2006) Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiol Plant 127:247–259

    Article  CAS  Google Scholar 

  33. Civello PM, Powell ALT, Sabehat A, Bennett AB (1999) An expansin gene expressed in ripening strawberry fruit. Plant Physiol 121:1273–1279

    Article  CAS  PubMed  Google Scholar 

  34. Wan CY, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  CAS  PubMed  Google Scholar 

  35. Oeller PW, Keller JA, Parks JE, Silbert JE, Theologis A (1993) Structural characterization of the early indoleacetic acid-inducible genes PS-IAA4/5 and PS-IAA6 of pea (Pisum sativum L). J Mol Biol 233:789–798

    Article  CAS  PubMed  Google Scholar 

  36. Dargeviciute A, Roux C, Decreux A, Sitbon F, Perrot-Rechenmann C (1998) Molecular cloning and expression of the early auxin responsive Aux/IAA gene family in Nicotiana tabacum. Plant Cell Physiol 39:993–1002

    CAS  PubMed  Google Scholar 

  37. Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31:675–685

    Article  CAS  PubMed  Google Scholar 

  38. Goldfarb B, Lanz-Garcia C, Lian Z, Whetten R (2003) Aux/IAA gene family is conserved in the gymnosperm, loblolly pine (Pinus taeda). Tree Physiol 23:1181–1192

    CAS  PubMed  Google Scholar 

  39. Song Y, Wang L, Xiong L (2009) Comprehensive expression profiling analysis of OsIAA gene family in developmental processes and in response to phytohormone and stress treatments. Planta 229:577–591

    Article  CAS  PubMed  Google Scholar 

  40. Tiwari SB, Hagen G, Guilfoyle TJ (2004) Aux/IAA proteins contain a potent transcriptional repression domain. Plant Cell 16:533–543

    Article  CAS  PubMed  Google Scholar 

  41. Ouellet F, Overvoorde PJ, Theologis (2001) A IAA17/AXR3: biochemical insight into an auxin mutant phenotype. Plant Cell 13:829–841

    Article  CAS  PubMed  Google Scholar 

  42. Robbins J, Dilworth SM, Laskey RA, Dingwall C (1991) Two interdependent basic domains in nucleoplasmin nuclear targeting sequence. Cell 64:615–623

    Article  CAS  PubMed  Google Scholar 

  43. Gorlich D, Mattaj IW (1996) Nucleocytoplasmic transport. Science 271:1513–1518

    Article  CAS  PubMed  Google Scholar 

  44. Raikhel NV (1992) Nuclear targeting in plants. Plant Physiol 100:1627–1632

    Article  CAS  PubMed  Google Scholar 

  45. Singla B, Chugh A, Khurana JP, Khurana P (2006) An early auxin-responsive Aux/IAA gene from wheat (Triticum aestivum) is induced by epibrassinolide and differentially regulated by light and calcium. J Exp Bot 57:4059–4070

    Article  CAS  PubMed  Google Scholar 

  46. Knox K, Grierson CS, Leyser O (2003) AXR3 and SHY2 interact to regulate root hair development. Development 130:5769–5777

    Article  CAS  PubMed  Google Scholar 

  47. Wang Y, Deng D, Bian Y, Lv Y, Xie Q (2010) Genome-wide analysis of primary auxin-responsive Aux/IAA gene family in maize (Zea mays L.). Mol Biol Rep. doi:10.1007/s11033-010-0058-6

  48. Wu B, Li YH, Wu JY, Chen QZ, Huang X, Chen YF, Huang XL (2010) Over-expression of mango (Mangifera indica L.) MiARF2 inhibits root and hypocotyl growth of Arabidopsis. Mol Biol Rep. doi:10.1007/s11033-010-9990-8

    Google Scholar 

  49. Muto H, Watahiki MK, Yamamoto KT (2007) What makes each Aux/IAA gene unique in its gene family, expression pattern or properties of the gene product? Plant Signal Behav 2:390–392

    PubMed  Google Scholar 

  50. Hamann T, Mayer U, Jurgens G (1999) The auxin-insensitive bodenlos mutation affects primary root formation and apical-basal patterning in the Arabidopsis embryo. Development 126:1387–1395

    CAS  PubMed  Google Scholar 

  51. Sabatini S, Beis D, Wolkenfelt H, Murfett J, Guilfoyle T, Malamy J, Benfey P, Leyser O, Bechtold N, Weisbeek P, Scheres B (1999) An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root. Cell 99:463–472

    Article  CAS  PubMed  Google Scholar 

  52. Feng HL, Zhong YX, Xie H, Chen JY, Li JG, Lu WJ (2008) Differential expression and regulation of longan XET genes in relation to fruit growth. Plant Sci 174:32–37

    Article  CAS  Google Scholar 

  53. Abebie B, Lers A, Philosoph-Hadas S, Goren R, Riov J, Meir S (2008) Differential effects of NAA and 2, 4-D in reducing floret abscission in cestrum (Cestrum elegans) cut flowers are associated with their differential activation of Aux/IAA homologous genes. Ann Bot 101:249–259

    Article  CAS  PubMed  Google Scholar 

  54. Sato A, Yamamoto KT (2008) Overexpression of the non-canonical Aux/IAA genes causes auxin-related aberrant phenotypes in Arabidopsis. Physiol Plant 133:397–405

    Article  CAS  PubMed  Google Scholar 

  55. Song Y, You J, Xiong L (2009) Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol 70:297–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported in part by the Guangdong Science Foundation (Grant 06200670).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang-jin Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Dj., Chen, Jy. & Lu, Wj. Expression and regulation of the early auxin-responsive Aux/IAA genes during strawberry fruit development. Mol Biol Rep 38, 1187–1193 (2011). https://doi.org/10.1007/s11033-010-0216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0216-x

Keywords

Navigation