Skip to main content
Log in

Species delineation in Pampus (Perciformes) and the phylogenetic status of the Stromateoidei based on mitogenomics

Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Recent studies on the mitochondrial genome have suggested that the duplications of tRNA and tandem repeats in the control region are important changes that are related to species diversity. This paper reports the study of mitogenomes from five Pampus (Perciformes, Stromateidae) species with very similar morphology. A duplicated tRNA Met gene in the tRNA-IQM region is present in Pampus sp. and P. punctatissimus. In the conserved sequence blocks of the control region, a duplicated CSB3 and promoter are found in Pampus sp. but are absent in P. minor. Moreover, a duplicated TAS is found in P. punctatissimus and P. chinensis. Based on the complete mitogenome sequence of Pampus sp., the first sequence reported from Stromateidae and the longest (17,694 bp) among the Perciformes mitogenomes, we conducted phylogenetic analysis to show that Stromateoidei and Scombroidei are more closely related to each other than to other Perciformes suborders. However, we reject the reciprocal monophyly of these two suborders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

ATPase 6 :

ATPase subunit 6

ATPase 8 :

ATPase subunit 8

bp:

Base pair(s)

COI–III:

Cytochrome c oxidase subunits I–III

CR:

Control region

CSB:

Conserved sequence blocks

Cyt b :

Cytochrome b

IQM:

Cluster of tRNA genes corresponding to amino acids isoleucine, glutamine and methionine

ND16:

NADH dehydrogenase subunits 1–6

rRNA:

Ribosomal RNA

tRNA:

Transfer RNA

TAS:

Termination associated sequence

References

  1. Zhang X, Yue B, Jiang W, Song Z (2009) The complete mitochondrial genome of rock carp Procypris rabaudi (Cypriniformes: Cyprinidae) and phylogenetic implications. Mol Biol Rep 36:981–991

    Article  CAS  PubMed  Google Scholar 

  2. Wu X, Wang L, Chen S, Zan R, Xiao H, Zhang YP (2010) The complete mitochondrial genomes of two species from Sinocyclocheilus (Cypriniformes: Cyprinidae) and a phylogenetic analysis within Cyprininae. Mol Biol Rep. doi:10.1007/s11033-009-9689-x

  3. Liu Y, Cui Z (2010) Complete mitochondrial genome of the Asian paddle crab Charybdis japonica (Crustacea: Decapoda: Portunidae): gene rearrangement of the marine brachyurans and phylogenetic considerations of the decapods. Mol Biol Rep. doi:10.1007/s11033-009-9773-2

  4. Singh TR (2008) Mitochondrial gene rearrangements: new paradigm in the evolutionary biology and systematics. Bioinformation 3:95–97

    PubMed  Google Scholar 

  5. Timm J, Figiel M, Kochzius M (2008) Contrasting patterns in species boundaries and evolution of anemonefishes (Amphiprioninae, Pomacentridae) in the centre of marine biodiversity. Mol Phylogenet Evol 49:268–276

    Article  CAS  PubMed  Google Scholar 

  6. Ursvik A, Breines R, Christiansen JS, Fevolden SE, Coucheron DH, Johansen SD (2007) A mitogenomic approach to the taxonomy of pollocks: Theragra chalcogramma and T. finnmarchica represent one single species. BMC Evol Biol 7:86

    Article  PubMed  Google Scholar 

  7. Liu Y, Cui Z (2010) Complete mitochondrial genome of the Chinese spiny lobster Panulirus stimpsoni (Crustacea: Decapoda): genome characterization and phylogenetic considerations. Mol Biol Rep. doi:10.1007/s11033-010-0122-2

  8. Nelson JS (2006) Fishes of the world, 4th edn. Wiley, New York

    Google Scholar 

  9. Pereira SL (2000) Mitochondrial genome organization and vertebrate phylogenetics. Genet Mol Biol 23:745–752

    CAS  Google Scholar 

  10. Bentzen P, Wright JM, Bryden LT, Sargent M, Zwaneburg KCT (1998) Tandem repeat polymorphism and heteroplasmy in the mitochondrial control region of redfishes (Sebastes: Scorpaenidae). J Hered 89:1–7

    Article  CAS  PubMed  Google Scholar 

  11. Breines R, Ursvik A, Nymark M, Johansen SD, Coucheron DH (2008) Complete mitochondrial genome sequences of the Arctic Ocean codfishes Arctogadus glacialis and Boreogadus saida reveal oriL and tRNA gene duplications. Polar Biol 31:1245–1252

    Article  Google Scholar 

  12. Dillon AK, Stepien CA (2001) Genetic and biogeographic relationships of the invasive round (Neogobius melanostomus) and tubenose (Proterorhinus marmoratus) gobies in the Great Lakes versus Eurasian populations. J Great Lakes Res 27:267–280

    Article  Google Scholar 

  13. Lee WJ, Conroy J, Howell WH, Kocher TD (1995) Structure and evolution of teleost mitochondrial control regions. J Mol Evol 41:54–66

    Article  CAS  PubMed  Google Scholar 

  14. Mabuchi K, Miya M, Satoh TP, Westneat MW, Nishida M (2004) Gene rearrangements and evolution of tRNA pseudogenes in the mitochondrial genome of the parrotfish (Teleostei: Perciformes: Scaridae). J Mol Evol 59:287–297

    Article  CAS  PubMed  Google Scholar 

  15. Miya M, Kawaguchi A, Nishida M (2001) Mitogenomic exploration of higher teleostean phylogenies: a case study for moderate-scale evolutionary genomics with 38 newly determined complete mitochondrial DNA sequences. Mol Biol Evol 18:1993–2009

    CAS  PubMed  Google Scholar 

  16. Miya M, Nishida M (1999) Organization of the mitochondrial genome of a deep-sea fish, Gonostoma gracile (Teleostei: Stomiiformes): first example of transfer RNA gene rearrangements in bony fishes. Mar Biotechnol 1:416–426

    Article  CAS  PubMed  Google Scholar 

  17. Saitoh K, Hayashizaki K, Yokoyama Y, Asahida T, Toyohara H, Yamashita Y (2000) Complete nucleotide sequence of Japanese flounder (Paralichthys olivaceus) mitochondrial genome: structural properties and cue for resolving teleostean relationships. J Hered 91:271–278

    Article  CAS  PubMed  Google Scholar 

  18. Satoh TP, Miya M, Endo H, Nishida M (2006) Round and pointed-head grenadier fishes (Actinopterygii: Gadiformes) represent a single sister group: evidence from the complete mitochondrial genome sequences. Mol Phylogenet Evol 40:129–138

    Article  CAS  PubMed  Google Scholar 

  19. Li X, Musikasinthorn P, Kumazawa Y (2006) Molecular phylogenetic analyses of snakeheads (Perciformes: Channidae) using mitochondrial DNA sequences. Ichthyol Res 53:148–159

    Article  Google Scholar 

  20. Ponce M, Infante C, Jimenez-Canfizano RM, Perez L, Manchado M (2008) Complete mitochondrial genome of the blackspot seabream, Pagellus bogaraveo (Perciformes: Sparidae), with high levels of length heteroplasmy in the WANCY region. Gene 409:44–52

    Article  CAS  PubMed  Google Scholar 

  21. Shirai SM, Kuranaga R, Sugiyama H, Higuchi M (2006) Population structure of the sailfin sandfish, Arctoscopus japonicus (Trichodontidae), in the Sea of Japan. Ichthyol Res 53:357–368

    Article  Google Scholar 

  22. Zhu SH, Zheng WJ, Zou JX, Yang YC, Shen XQ (2007) Mitochondrial DNA control region structure and molecular phylogenetic relationship of Carangidae. Zool Res 28:606–614

    CAS  Google Scholar 

  23. Herrero E (2005) Evolutionary relationships between Saccharomyces cerevisiae and other fungal species as determined from genome comparisons. Revis Iberoam Micol 22:217–222

    Article  Google Scholar 

  24. Cheng QT (1962) Stromateidae, the fishes of South China Sea. Science Press, Beijing

    Google Scholar 

  25. Fowler HL (1972) A synopsis of the fishes of China. Antiqu Junk Neth 1:296–305

    Google Scholar 

  26. Haedrich RL (1967) The stromateoid fishes: systematics and a classification. Bull Mus Comp Zool 135:31–139

    Google Scholar 

  27. Liu J, Li CS (1998) A new pomfret species, Pampus minor sp. nov. Chin J Oceanol Limnol 16:280–285

    Article  Google Scholar 

  28. Cui Z, Liu Y, Liu J, Luan W (2010) Molecular identification of Pampus fishes (Perciformes, Stromateidae). Ichthyol Res 57:32–39

    Article  Google Scholar 

  29. Yamada U, Shirai S, Irie T, Tokimura M, Deng S, Zheng Y, Li C, Kim YU, Kim YS (1995) Names and illustrations of fishes from the East China Sea and the Yellow Sea. Overseas Fishery Cooperation Foundation, Tokyo

    Google Scholar 

  30. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  31. Cheng S, Chang SY, Gravitt P, Respess R (2004) Long PCR. Nature 369:684–685

    Article  Google Scholar 

  32. Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194

    CAS  PubMed  Google Scholar 

  33. Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185

    CAS  PubMed  Google Scholar 

  34. Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202

    CAS  PubMed  Google Scholar 

  35. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  36. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252–3255

    Article  CAS  PubMed  Google Scholar 

  37. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  CAS  PubMed  Google Scholar 

  38. Cui Z, Liu Y, Li CP, You F, Chu KH (2009) The complete mitochondrial genome of the large yellow croaker, Larimichthys crocea (Perciformes, Sciaenidae): unusual features of its control region and the phylogenetic position of the Sciaenidae. Gene 432:33–43

    Article  CAS  PubMed  Google Scholar 

  39. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580

    Article  CAS  PubMed  Google Scholar 

  40. Miya M, Nishida M (2000) Use of mitogenomic information in teleostean molecular phylogenetics: a tree-based exploration under the maximum-parsimony optimality criterion. Mol Phylogenet Evol 17:437–455

    Article  CAS  PubMed  Google Scholar 

  41. Xia X, Xie Z (2001) DAMBE: software package for data analysis in molecular biology and evolution. J Hered 92:371–373

    Article  CAS  PubMed  Google Scholar 

  42. Xia XH, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7

    Article  CAS  PubMed  Google Scholar 

  43. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  PubMed  Google Scholar 

  44. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  45. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  46. Yan J, Li HD, Zhou KY (2008) Evolution of the mitochondrial genome in snakes: gene rearrangements and phylogenetic relationships. BMC Genomics 9:569

    Article  PubMed  Google Scholar 

  47. Liu ZQ, Wang YQ, Su B (2005) The mitochondrial genome organization of the rice frog, Fejervarya limnocharis (Amphibia: Anura): a new gene order in the vertebrate mtDNA. Gene 346:145–151

    Article  CAS  PubMed  Google Scholar 

  48. Beagley CT, Okimoto R, Wolstenholme DR (1999) Mytilus mitochondrial DNA contains a functional gene for a tRNA(Ser)(UCN) with a dihydrouridine arm-replacement loop and a pseudo-tRNA(Ser)(UCN) gene. Genetics 152:641–652

    CAS  PubMed  Google Scholar 

  49. Hoffmann RJ, Boore JL, Brown WM (1992) A novel mitochondrial genome organization for the blue mussel, Mytilus edulis. Genetics 131:397–412

    CAS  PubMed  Google Scholar 

  50. Gissi C, Iannelli F, Pesole G (2004) Complete mtDNA of Ciona intestinalis reveals extensive gene rearrangement and the presence of an atp8 and an extra trnM gene in ascidians. J Mol Evol 58:376–389

    Article  CAS  PubMed  Google Scholar 

  51. Yokobori S, Suzuki T, Watanabe K (2001) Genetic code variations in mitochondria: tRNA as a major determinant of genetic code plasticity. J Mol Evol 53:314–326

    Article  CAS  PubMed  Google Scholar 

  52. Boore JL (2000) The duplication/random loss model for gene rearrangement exemplified by mitochondrial genomes of deuterostome animals. In: Sankoff D, Nadeau J (eds) Comparative genomics, computational biology series. Kluwer, Dordrecht, pp 133–147

    Google Scholar 

  53. Inoue JG, Miya M, Tsukamoto K, Nishida M (2003) Evolution of the deep-sea gulper eel mitochondrial genomes: large-scale gene rearrangements originated within the eels. Mol Biol Evol 20:1917–1924

    Article  CAS  PubMed  Google Scholar 

  54. Macey JR, Larson A, Ananjeva NB, Fang ZL, Papenfuss TJ (1997) Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome. Mol Biol Evol 14:91–104

    CAS  PubMed  Google Scholar 

  55. Milana V, Sola L, Congiu L, Rossi AR (2008) Mitochondrial DNA in Atherina (Teleostei, Atheriniformes): differential distribution of an intergenic spacer in lagoon and marine forms of Atherina boyeri. J Fish Biol 73:1216–1227

    Article  CAS  Google Scholar 

  56. Moritz C, Brown WM (1987) Tandem duplications in animal mitochondrial DNAs: variation in incidence and gene content among lizards. Proc Natl Acad Sci USA 84:7183–7187

    Article  CAS  PubMed  Google Scholar 

  57. Paabo S, Thomas WK, Whitfield KM, Kumazawa Y, Wilson AC (1991) Rearrangements of mitochondrial transfer-RNA genes in marsupials. J Mol Evol 33:426–430

    Article  CAS  PubMed  Google Scholar 

  58. San Mauro D, Gower DJ, Zardoya R, Wilkinson M (2006) A hotspot of gene order rearrangement by tandem duplication and random loss in the vertebrate mitochondrial genome. Mol Biol Evol 23:227–234

    Article  CAS  PubMed  Google Scholar 

  59. Mundy NI, Winchell CS, Woodruff DS (1996) Tandem repeats and heteroplasmy in the mitochondrial DNA control region of the loggerhead shrike (Lanius ludovicianus). J Hered 87:21–26

    CAS  PubMed  Google Scholar 

  60. Hayasaka K, Ishida T, Horai S (1991) Heteroplasmy and polymorphism in the major noncoding region of mitochondrial DNA in Japanese monkeys: association with tandemly repeated sequences. Mol Biol Evol 8:399–415

    CAS  PubMed  Google Scholar 

  61. Broughton RE, Dowling TE (1994) Length variation in mitochondrial DNA of the minnow Cyprinella spiloptera. Genetics 138:179–190

    CAS  PubMed  Google Scholar 

  62. Broughton RE, Dowling TE (1997) Evolutionary dynamics of tandem repeats in the mitochondrial DNA control region of the minnow Cyprinella spiloptera. Mol Biol Evol 14:1187–1196

    CAS  PubMed  Google Scholar 

  63. Cecconi F, Giorgi M, Mariottini P (1995) Unique features in the mitochondrial D-loop region of the European sea-bass Dicentrarchus labrax. Gene 160:149–155

    Article  CAS  PubMed  Google Scholar 

  64. Wang TY, Tzeng CS, Shen SC (1999) Conservation and phylogeography of Taiwan paradise fishes, Macropodus opercularis Linnaeus. Acta Zool Taiwan 10:121–134

    Google Scholar 

  65. Faber JE, Stepien CA (1998) Tandemly repeated sequences in the mitochondrial DNA control region and phylogeography of the pike-perches Stizostedion. Mol Phylogenet Evol 10:310–322

    Article  CAS  PubMed  Google Scholar 

  66. Nesbø CL, Arab MO, Jakobsen KS (1998) Heteroplasmy, length and sequence variation in the mtDNA control regions of three percid fish species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca). Genetics 148:1907–1919

    PubMed  Google Scholar 

  67. Buroker NE, Brown JR, Gilbert TA, Ohara PJ, Beckenbach AT, Thomas WK, Smith MJ (1990) Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. Genetics 124:157–163

    CAS  PubMed  Google Scholar 

  68. Hebert PDN, Cywinska A, Ball SL, DeWaard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond Ser B 270:313–321

    Article  CAS  Google Scholar 

  69. Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971

    Article  PubMed  Google Scholar 

  70. Linares MC, Soto-Calderon ID, Lees DC, Anthony NM (2009) High mitochondrial diversity in geographically widespread butterflies of Madagascar: a test of the DNA barcoding approach. Mol Phylogenet Evol 50:485–495

    Article  CAS  PubMed  Google Scholar 

  71. Saccone C, Lanave C, De Grassi A (2006) Metazoan OXPHOS gene families: evolutionary forces at the level of mitochondrial and nuclear genomes. Biochim Biophys Acta 1757:1171–1178

    Article  CAS  PubMed  Google Scholar 

  72. Doiuchi R, Nakabo T (2006) Molecular phylogeny of the stromateoid fishes (Teleostei: Perciformes) inferred from mitochondrial DNA sequences and compared with morphology-based hypotheses. Mol Phylogenet Evol 39:111–123

    Article  CAS  PubMed  Google Scholar 

  73. Yagishita N, Miya M, Yamanoue Y, Shirai SM, Nakayama K, Suzuki N, Satoh TP, Mabuchi K, Nishida M, Nakabo T (2009) Mitogenomic evaluation of the unique facial nerve pattern as a phylogenetic marker within the percifom fishes (Teleostei: Percomorpha). Mol Phylogenet Evol 53:258–266

    Article  CAS  PubMed  Google Scholar 

  74. Liu Y, Cui Z (2009) The complete mitochondrial genome of the cutlassfish Trichiurus japonicus (Perciformes: Trichiuridae): genome characterization and phylogenetic considerations. Mar Genomics 2:133–142

    Article  Google Scholar 

  75. Stepien CA, Kocher TD (1997) Molecules and morphology in studies of fish evolution. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic Press, San Diego, pp 1–11

    Chapter  Google Scholar 

  76. Johnson GD, Fritzsche RA (1989) Graus nigra, an omnivorous girellid, with a comparative osteology and comments on relationships of the Girellidae (Pisces, Perciformes). Proc Acad Nat Sci Phila 141:1–27

    Google Scholar 

  77. Yagishita N, Kobayashi T, Nakabo T (2002) Review of monophyly of the Kyphosidae (sensu Nelson, 1994), inferred from the mitochondrial ND2 gene. Ichthyol Res 49:103–108

    Article  Google Scholar 

Download references

Acknowledgments

We thank Maochang Ding and Chunlin Wang for collecting the samples, Jing Liu for identifying the species based on morphology, and David Wilmshurst for editing the manuscript. This research was supported by a grant from the National Natural Science Foundation of China (40676085).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Hou Chu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 386 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Z., Liu, Y., Li, C.P. et al. Species delineation in Pampus (Perciformes) and the phylogenetic status of the Stromateoidei based on mitogenomics. Mol Biol Rep 38, 1103–1114 (2011). https://doi.org/10.1007/s11033-010-0207-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0207-y

Keywords

Navigation