Skip to main content

Advertisement

Log in

The realm of microRNAs in cancers

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are members of the non-protein coding RNA family. miRNAs, which can regulate genes on transcriptomic level through either degrading the target messenger RNA (mRNA) or suppressing the protein synthesis, also take part in a number of biological functions that involve development, differentiation, proliferation and apoptosis. The mutations and polymorphisms in the expression levels of miRNA genes or alterations in their epigenetic mechanisms may play their roles in the formation of malignancies. Increasing evidence shows that aberrant miRNA expression profiles are present in a variety of cancers. Therefore, it has been suggested that these profiles could be useful for diagnosis and classification of different tumor types and that these small RNAs might provide significant opportunities for the development of future miRNA-based therapies. In this review, we aimed to look into the realm of miRNAs, which is a recent area of research, appraise their biological activities on molecular level and their probable benefits on clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Lee RC, Feinbaum RC, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with anti-sense complementary to lin-4. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  2. Lim LP, Glasner ME, Yekta S, Burge CB, Bartel DP (2003) Vertebrata microRNA genes. Science 299(5612):1540

    Article  CAS  PubMed  Google Scholar 

  3. Lynam-Lennon N, Maher SG, Reynolds JV (2009) The roles of microRNA in cancer and apoptosis. Biol Rev Camb Philos Soc 84(1):55–71

    Article  PubMed  Google Scholar 

  4. Yendamuri S, Calin GA (2009) The role of microRNA in human leukemia: a review. Leukemia 23(7):1257–1263

    Article  CAS  PubMed  Google Scholar 

  5. miRBase. Available from: http://www.mirbase.org/. Accessed 4 June 2010

  6. Wang V, Wu W (2009) MicroRNA-based therapeutics for cancer. BioDrugs 23(1):15–23

    Article  PubMed  Google Scholar 

  7. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and down-regulation of micro-RNA genes miR-15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99(24):15524–15529

    Google Scholar 

  8. Rana TM (2007) Illuminating the science: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 8(1):23–36

    Article  CAS  PubMed  Google Scholar 

  9. Croce CM (2009) Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10(10):704–714

    Article  CAS  PubMed  Google Scholar 

  10. Fabbri M (2008) MicroRNAs and cancer epigenetics. Curr Opin Investig Drugs 9(6):583–590

    CAS  PubMed  Google Scholar 

  11. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10(2):126–139

    Article  CAS  PubMed  Google Scholar 

  12. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6(5):376–385

    Article  CAS  PubMed  Google Scholar 

  13. Borchert GM, Lanier W, Davidson BL (2006) RNA polymerase III transcribes human microRNA. Nat Struct Mol Biol 13(12):1097–1101

    Article  CAS  PubMed  Google Scholar 

  14. Pawlicki JM, Steitz JA (2008) Primary microRNA transcript retention at sites of transcripsion leads to enhanced microRNA production. J Cell Biol 182(1):61–76

    Article  CAS  PubMed  Google Scholar 

  15. Kim YK, Kim VN (2007) Processing of intronic microRNAs. EMBO J 26(3):775–783

    Article  CAS  PubMed  Google Scholar 

  16. Okamura K, Hagen JW, Duan H, Tyler DM, Lai EC (2007) The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130(1):89–100

    Article  CAS  PubMed  Google Scholar 

  17. Ruby JG, Jan CH, Bartel DP (2007) Intronic microRNA precursors that bypass Drosha processing. Nature 448(7149):83–86

    Article  CAS  PubMed  Google Scholar 

  18. Cowland JB, Hother C, Grønbaek K (2007) MicroRNAs and cancer. APMIS 115(10):1090–1106

    Article  CAS  PubMed  Google Scholar 

  19. Chen K, Song F, Calin GA, Wei Q, Hao X, Zhang W (2008) Polymorphisms in microRNA targets: a gold mine for molecular epidemiology. Carcinogenesis 29(7):1306–1311

    Article  CAS  PubMed  Google Scholar 

  20. Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9(3):219–230

    Article  CAS  PubMed  Google Scholar 

  21. Hutvagner G, Simard MJ (2008) Argonaute proteins: key players in RNA silencing. Nat Rev Mol Cell Biol 9(1):22–32

    Article  CAS  PubMed  Google Scholar 

  22. Wilshem JE, Smibert CA (2005) Mechanisms of translational regulation in Drosophila. Biol Cell 97(4):235–252

    Article  Google Scholar 

  23. Standart N, Minshall N (2008) Translational control in early development: CPEB, P-bodies and germinal granules. Biochem Soc Trans 36(Pt 4):671–676

    Article  CAS  PubMed  Google Scholar 

  24. Chendrimada TP, Finn KJ, Ji X, Baillat D, Gregory RI, Liebhaber SA, Pasquinelli AE, Shiekhattar R (2007) MicroRNA silencing through RISC recruitment of eIF6. Nature 447(7146):823–828

    Article  CAS  PubMed  Google Scholar 

  25. Wang M, Tan LP, Dijkstra MK, Van Lom K, Robertus JL, Harms G, Blokzijl T, Kooistra K, van T’veer MB, Rosati S, Visser L, Jongen-Lavrencic M, Kluin PM, van den Berg A (2008) miRNA analysis in B-cell chronic lymphocytic leukaemia: proliferation centres characterized by low miR-150 and high BIC/miR-155 expression. J Pathol 215(1):13–20

    Article  CAS  PubMed  Google Scholar 

  26. Eulalio A, Behm-Ansmant I, Izaurralde E (2007) P-bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8(1):9–22

    Article  CAS  PubMed  Google Scholar 

  27. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas-Tikhonenko A, Mendell JT (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40(1):43–50

    Article  CAS  PubMed  Google Scholar 

  28. He L, He X, Lowe SW, Hannon GJ (2007) microRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer 7(11):819–822

    Article  CAS  PubMed  Google Scholar 

  29. He L, He X, Lim LP, De Stanchine E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447(7148):1130–1134

    Article  CAS  PubMed  Google Scholar 

  30. Fazi F, Rosa A, Fatica A, Gelmetti V, De Marchis ML, Nervi C, Bozzoni I (2005) A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBP alpha regulates human granulopoiesis. Cell 123(5):819–831

    Article  CAS  PubMed  Google Scholar 

  31. Barbarotto E, Schmittgen TD, Calin GA (2008) MicroRNAs and cancer: profile, profile, profile. Int J Cancer 122(5):969–977

    Article  CAS  PubMed  Google Scholar 

  32. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005) A microRNA polycistron as a potential human oncogene. Nature 435(7043):828–833

    Article  CAS  PubMed  Google Scholar 

  33. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM (2004) Human microRNA genes are frequently located at frajile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101(9):2999–3004

    Article  CAS  PubMed  Google Scholar 

  34. Baffa R, Fassan M, Volinia S, O’Hara B, Liu CG, Palazzo JP, Gardiman M, Rugge M, Gomella LG, Croce CM, Rosenberg A (2009) MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets. J Pathol 219(2):214–221

    Article  CAS  PubMed  Google Scholar 

  35. Xu W, Li JY (2007) MicroRNA gene expression in malignant Iymphoproliferative disorders. Chin Med J 120(11):996–999

    CAS  PubMed  Google Scholar 

  36. Bueno MJ, Pérez de Castro I, Gómez de Cedrón M, Santos J, Calin GA, Cigudosa JC, Croce CM, Fernández-Piqueras J, Malumbres M (2008) Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR–ABL1 oncogene expression. Cancer Cell 13(6):496–506

    Article  CAS  PubMed  Google Scholar 

  37. Faber J, Gregory RI, Armstrong SA (2008) Linking miRNA regulation to BCR–ABL expression: the next dimension. Cancer Cell 13(6):467–469

    Article  CAS  PubMed  Google Scholar 

  38. Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, Liu S, Alder H, Costinean S, Fernandez-Cymering C, Volinia S, Guler G, Morrison CD, Chan KK, Marcucci G, Calin GA, Huebner K, Croce CM (2007) MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci USA 104(40):15805–15810

    Article  CAS  PubMed  Google Scholar 

  39. Duursma AM, Kedde M, Schrier M, Le Sage C, Agami R (2008) miR-148 targets human DNMT3b protein coding region. RNA 14(5):872–877

    Article  CAS  PubMed  Google Scholar 

  40. Chen JF, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, Conlon FL, Wang DZ (2006) The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 38(2):228–233

    Article  CAS  PubMed  Google Scholar 

  41. Benetti R, Gonzalo S, Jaco I, Muňos P, Gonzales S, Schoeftner S, Murchison E, Andl T, Chen T, Klatt P, Li E, Serrano M, Millar S, Hannon G, Blasco MA (2008) A mammalian microRNA cluster controls DNA methylation and telomere recombination via Rbl-2-dependent regulation of DNA methyltransferases. Nat Struct Mol Biol 15(3):268–279

    Article  CAS  PubMed  Google Scholar 

  42. Misha PJ, Bertino JR (2009) MicroRNA polymorphisms: the future of pharmacogenomics, molecular epidemiology and individualized medicine. Pharmacogenomics 10(3):399–416

    Article  Google Scholar 

  43. Gottwein E, Cai X, Cullen BR (2006) A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol 80(11):5321–5326

    Article  CAS  PubMed  Google Scholar 

  44. Kumar MS, Lu J, Mercer KL, Golub TR, Jacks T (2007) Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39(5):673–677

    Article  CAS  PubMed  Google Scholar 

  45. Raveche ES, Salerno E, Scaglione BJ, Manohar V, Abbasi F, Lin YC, Fredrickson T, Landgraf P, Ramachandra S, Huppi K, Toro JR, Zenger VE, Metcalf RA, Marti GE (2007) Abnormal microRNA-16 locus with synteny to human 13q14 linked to CLL in NZB mice. Blood 109(12):5079–5086

    Article  CAS  PubMed  Google Scholar 

  46. Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, Iorio MV, Visone R, Sever NI, Fabbri M, Iuliano R, Palumbo T, Pichiorri F, Roldo C, Garzon R, Sevignani C, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM (2005) A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 353(17):1793–1801

    Article  CAS  PubMed  Google Scholar 

  47. Duan R, Pak C, Jin P (2007) Single nucleotide polymorphism associated with mature miR-125a alters the processing of pri-miRNA. Hum Mol Genet 16(9):1124–1131

    Article  CAS  PubMed  Google Scholar 

  48. Misha PJ, Humeniuk R, Mishra PJ, Longo-Sorbello GSA, Banerjee D, Bertino J (2007) A miR-24 microRNA binding-site polymorphism in dihydrofolate reductase gene leads to methotrexate resistance. Proc Natl Acad Sci USA 104(33):13513–13518

    Article  Google Scholar 

  49. Tchatchou S, Jung A, Hemminki K, Sutter C, Wappenschmidt B, Bugert P, Weber BH, Niederacher D, Arnold N, Varon-Mateeva R, Ditsch N, Meindl A, Schmutzler RK, Bartram CR, Burwinkel B (2009) A variant affecting a putative miRNA target site in estrogen receptor (ESR) 1 is associated with breast cancer risk in premenopausal women. Carcinogenesis 30(1):59–64

    Article  CAS  PubMed  Google Scholar 

  50. Christensen BC, Moyer BJ, Avissar M, Ouellet LG, Plaza SL, McClean MD, Marsit CJ, Kelsey KT (2009) A let-7 microRNA-binding site polymorphism in the KRAS 3′ UTR is associated with reduced survival in oral cancers. Carcinogenesis 30(6):1003–1007

    Article  CAS  PubMed  Google Scholar 

  51. Chin LJ, Ratner E, Leng S, Zhai R, Nallur S, Babar I, Muller RU, Straka E, Su L, Burki EA, Crowell RE, Patel R, Kulkarni T, Homer R, Zelterman D, Kidd KK, Zhu Y, Christiani DC, Belinsky SA, Slack FJ, Weidhaas JB (2008) A SNP in a let-7 microRNA complementary site in the KRAS 3′ untranslated region increases non-small cell lung cancer risk. Cancer Res 68(20):8535–8540

    Article  CAS  PubMed  Google Scholar 

  52. Sassen S, Miska EA, Caldas C (2008) MicroRNA: implications for cancer. Virchows Arch 452(1):1–10

    Article  CAS  PubMed  Google Scholar 

  53. He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, Calin GA, Liu CG, Franssila K, Suster S, Kloos RT, Croce CM, de la Chapelle A (2005) The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci USA 102(52):19075–19080

    Article  CAS  PubMed  Google Scholar 

  54. Lv K, Guo Y, Zhang Y, Wang K, Jia Y, Sun S (2008) Allele-specific targeting of hsa-miR-657 to human IGF2R creates a potential mechanism underlying the association of ACAA-insertion/deletion polymorphism with type 2 diabetes. Biochem Biophys Res Commun 374(1):101–105

    Article  CAS  PubMed  Google Scholar 

  55. Passetti F, Ferreira CG, Costa FF (2009) The impact of microRNAs and alternative splicing in pharmacogenomics. Pharmacogenomics J 9(1):1–13

    Article  CAS  PubMed  Google Scholar 

  56. Saunders MA, Liang H, Li WH (2007) Human polymorphism at microRNAs and microRNA target sites. Proc Natl Acad Sci USA 104(9):3300–3305

    Article  CAS  PubMed  Google Scholar 

  57. Iwai N, Naraba H (2005) Polymorphisms in human pre-miRNAs. Biochem Biophys Res Commun 331(4):1439–1444

    Article  CAS  PubMed  Google Scholar 

  58. Jazdzewski K, Liyanarachchi S, Swierniak M, Pachucki J, Ringel MD, Jarzab B, de la Chapelle A (2009) Polymorphic mature microRNAs from passenger strand of pre-miR-146a contribute to thyroid cancer. Proc Natl Acad Sci USA 106(5):1502–1505

    Article  CAS  PubMed  Google Scholar 

  59. Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H (2008) A functional polymorphism in the miR-146a gene and age of familial breast/ovarian cancer diagnosis. Carcinogenesis 29(10):1963–1966

    Article  CAS  PubMed  Google Scholar 

  60. Jazdzewski K, Murray EL, Franssila K, Jarzab B, Schoenberg DR, de la Chapelle A (2008) Common SNP in pre-miR-146a decreases mature miR expression and predisposes to papillary thyroid carcinoma. Proc Natl Acad Sci USA 105(20):7269–7274

    Article  CAS  PubMed  Google Scholar 

  61. Lujambio A, Calin GA, Villanueva A, Ropero S, Sánchez-Céspedes M, Blanco D, Montuenga LM, Rossi S, Nicoloso MS, Faller WJ, Gallagher WM, Eccles SA, Croce CM, Esteller M (2008) A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci USA 105(36):13556–13561

    Article  CAS  PubMed  Google Scholar 

  62. Asangani IA, Rasheed SA, Nikolova DA, Leupold JH, Colburn NH, Post S, Allgayer H (2008) MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15):2128–2136

    Article  CAS  PubMed  Google Scholar 

  63. Zhu S, Wu H, Wu F, Nie D, Sheng S, Mo YY (2008) MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res 18(3):350–359

    Article  CAS  PubMed  Google Scholar 

  64. Huang Q, Gumireddy K, Schrier M, Le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-Szanto AJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Puré E, Agami R (2008) The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10(2):202–210

    Article  CAS  PubMed  Google Scholar 

  65. Sasayama T, Nishihara M, Kondoh T, Hosoda K, Kohmura E (2009) MicroRNA-10b is overexpressed in malignant glioma and associated with tumor invasive factors, uPAR and RhoC. Int J Cancer 125(6):1407–1413

    Article  CAS  PubMed  Google Scholar 

  66. Ma L, Teruya-Feldstein J, Weinberg RA (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449(7163):682–688

    Article  CAS  PubMed  Google Scholar 

  67. Negrini M, Calin GA (2008) Breast cancer metastasis: a microRNA story. Breast Cancer Res 10(2):203

    Article  PubMed  Google Scholar 

  68. Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massagué J (2008) Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451(7175):147–152

    Article  CAS  PubMed  Google Scholar 

  69. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo YY (2009) p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 106(9):3207–3212

    Article  CAS  PubMed  Google Scholar 

  70. Kuehbacher A, Urbich C, Dimmeler S (2008) Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci 29(1):12–15

    Article  CAS  PubMed  Google Scholar 

  71. Hua Z, Lv Q, Ye W, Wong CK, Cai G, Gu D, Ji Y, Zhao C, Wang J, Yang BB, Zhang Y (2006) MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One 1:e116

    Article  PubMed  Google Scholar 

  72. Poliseno L, Tuccoli A, Mariani L, Evangelista M, Citti L, Woods K, Mercatanti A, Hammond S, Rainaldi G (2006) MicroRNAs modulate the angiogenic properties of HUVECs. Blood 108(9):3068–3071

    Article  CAS  PubMed  Google Scholar 

  73. Suárez Y, Fernández-Hernando C, Pober JS, Sessa WC (2007) Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res 100(8):1164–1173

    Article  PubMed  Google Scholar 

  74. Guo CJ, Pan Q, Li DG, Sun H, Liu BW (2009) miR-15b and miR-16 are implicated in activation of the rat hepatic stellate cell: an essential role for apoptosis. J Hepatol 50(4):766–778

    Article  CAS  PubMed  Google Scholar 

  75. Akao Y, Nakagawa Y, Naoe T (2006) MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 16(4):845–850

    CAS  PubMed  Google Scholar 

  76. Pekarsky Y, Calin GA, Aqeilan R (2005) Chronic lymphocytic leukemia: molecular genetics and animal models. Curr Top Microbiol Immunol 294:51–70

    Article  CAS  PubMed  Google Scholar 

  77. Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA, Jones PA (2006) Specific activation of microRNA-127 with downregulation of proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9(6):435–443

    Article  CAS  PubMed  Google Scholar 

  78. Lu Z, Liu M, Stribinskis V, Klinge CM, Ramos KS, Colburn NH, Li Y (2008) MicroRNA-21 promotes cell transformation by targeting the programmed cell death 4 gene. Oncogene 27(31):4373–4379

    Article  CAS  PubMed  Google Scholar 

  79. Pedersen IM, Otero D, Kao E, Miletic AV, Hother C, Ralfkiaer E, Rickert RC, Gronbaek K, David M (2009) Onco-miR-155 targets SHIP1 to promote TNFa-dependent growth of B cell lymphomas. EMBO Mol Med 1(5):288–295

    Article  CAS  PubMed  Google Scholar 

  80. Ciafrè SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG (2005) Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 334(4):1351–1358

    Article  PubMed  Google Scholar 

  81. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C (2005) MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci USA 102(50):18081–18086

    Article  CAS  PubMed  Google Scholar 

  82. Lehmann U, Hasemeier B, Christgen M, Müller M, Römermann D, Länger F, Kreipe H (2008) Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol 214(1):17–24

    Article  CAS  PubMed  Google Scholar 

  83. Petillo D, Kort EJ, Anema J, Furge KA, Yang XJ, Teh BT (2009) MicroRNA profiling of human kidney cancer subtypes. Int J Oncol 35(1):109–114

    Article  CAS  PubMed  Google Scholar 

  84. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P, Sevignani C, Byrne D, Negrini M, Pagano F, Gomella LG, Croce CM, Baffa R (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25(5):387–392

    CAS  PubMed  Google Scholar 

  85. McLaughlin J, Cheng D, Singer O, Lukacs RU, Radu CG, Verma IM, Witte ON (2007) Sustained suppression of Bcr-Abl-driven lymphoid leukemia by microRNA mimics. Proc Natl Acad Sci USA 104(51):20501–20506

    Article  CAS  PubMed  Google Scholar 

  86. Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY (2007) miR-21-mediated tumor growth. Oncogene 26(19):2799–2803

    Article  CAS  PubMed  Google Scholar 

  87. Krützfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with ‘antagomirs’. Nature 438(7068):685–689

    Article  PubMed  Google Scholar 

  88. Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726

    Article  CAS  PubMed  Google Scholar 

  89. Ota A, Tagawa H, Karnan S, Tsuzuki S, Karpas A, Kira S, Yoshida Y, Seto M (2004) Identification and characterization of a novel gene, C13orf25, as a target for 13q31–q32 amplification in malignant lymphoma. Cancer Res 64(9):3087–3095

    Article  CAS  PubMed  Google Scholar 

  90. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103(7):2257–2261

    Article  CAS  PubMed  Google Scholar 

  91. Pierson J, Hostager B, Fan R, Vibhakar R (2008) Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma. J Neurooncol 90(1):1–7

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ece Konac.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varol, N., Konac, E., Gurocak, O.S. et al. The realm of microRNAs in cancers. Mol Biol Rep 38, 1079–1089 (2011). https://doi.org/10.1007/s11033-010-0205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0205-0

Keywords

Navigation