Skip to main content

Advertisement

Log in

PMS1 from Arabidopsis thaliana: optimization of protein overexpression in Escherichia coli

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

One of the major limitations when attempting to obtain detailed biochemical, biophysical and immunological characterization of plant DNA mismatch repair proteins is their extremely low abundance in vivo under normal growth conditions. An initial analysis of PMS1 transcript level in various Arabidopsis thaliana tissues was carried out by quantitative real-time RT-PCR. For calli, flowers and seedlings, the corresponding cDNA copies per ng RNA were 66.9, 3.1 and 2.7, respectively. This suggests an important role of this gene in rapidly dividing tissues. In order to obtain a high level of PMS1 from Arabidopsis thaliana, the protein production was successfully optimized in an Escherichia coli host. The corresponding coding sequence of PMS1 was inserted into pET28a downstream a hexa-histidyl leader sequence. The pET28a–AtPMS1 plasmid was efficiently expressed in JM109(DE3)-pRIL strain probably due to the genotype features of the cells (endA1, recA1, relA1, Δ(lac-proAB), laqIqZΔM15) and the presence of extra copies of argU, ileY, and leuW tRNA genes, which encode the RIL codons. This strategy has allowed us to obtain His-tagged PMS1 at about 7% of the total soluble E. coli cell protein. The protein was purified by standard Ni+ affinity chromatography procedures and the electrophoretically homogeneous preparation was used as an antigen for antibody generation in rabbits. This approach provides effective tools for a further reconstitution of plant mismatch repair (MMR) system in vitro and for the analysis of protein expression and distribution of AtPMS1 in various tissues after different treatments (e.g. DNA mutagens).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li G-M (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18:85–98

    Article  CAS  PubMed  Google Scholar 

  2. Kunkel T, Erie D (2005) DNA mismatch repair. Annu Rev Biochem 74:681–710

    Article  CAS  PubMed  Google Scholar 

  3. Iyer R, Pluciennik A, Burdett V, Modrich P (2006) DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323

    Article  CAS  PubMed  Google Scholar 

  4. Jiricny J (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 7:335–346

    Article  CAS  PubMed  Google Scholar 

  5. Hsieh P, Yamane K (2008) DNA mismatch repair: molecular mechanism, cancer, and ageing. Mech Ageing Dev 129:391–407

    Article  CAS  PubMed  Google Scholar 

  6. Dzantiev L, Constantin N, Genschel J, Iyer R, Burgers P, Modrich P (2004) A defined human system that supports bidirectional mismatch-provoked excision. Mol Cell 15:31–41

    Article  CAS  PubMed  Google Scholar 

  7. Li G, Modrich P (1995) Restoration of mismatch repair to nuclear extracts of H6 colorectal tumor cells by a heterodimer of human MutL homologs. Proc Natl Acad Sci USA 92:1950–1954

    Article  CAS  PubMed  Google Scholar 

  8. Prolla T, Christie D, Liskay R (1994) Dual requirement in yeast DNA mismatch repair for MLH1 and PMS1, two homologs of the bacterial mutL gene. Mol Cell Biol 14:407–415

    CAS  PubMed  Google Scholar 

  9. Wang T-F, Kleckner N, Hunter N (1999) Functional specificity of MutL homologs in yeast: Evidence for three Mlh1-based heterocomplexes with distinct roles during meiosis in recombination and mismatch correction. Proc Natl Acad Sci USA 96:13914–13919

    Article  CAS  PubMed  Google Scholar 

  10. Abdel-Rahman WM, Mecklin J-P, Peltomäki P (2006) The genetics of HNPCC: application to diagnosis and screening. Crit Rev Oncol Hematol 58:208–220

    Article  PubMed  Google Scholar 

  11. Bergerat A, de Massy B, Gadelle D, Varoutas PC, Nicolas A, Forterre P (1997) An atypical type II DNA topoisomerase from archaea with implication for meiotic recombination. Nature 386:414–417

    Article  CAS  PubMed  Google Scholar 

  12. Mushegian AR, Bassett DE Jr, Boguski MS, Bork P, Koonin EV (1997) Positionally cloned human disease genes: patterns of evolutionary conservation and functional motifs. Proc Natl Acad Sci USA 94:5831–5836

    Article  CAS  PubMed  Google Scholar 

  13. Dutta R, Inouye M (2000) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem Sci 25:24–28

    Article  CAS  PubMed  Google Scholar 

  14. Hall M, Shcherbakova P, Fortune J et al (2003) DNA binding by yeast Mlh1 and Pms1: implications for DNA mismatch repair. Nucleic Acids Res 31:2025–2034

    Article  CAS  PubMed  Google Scholar 

  15. Ban C, Yang W (1998) Crystal structure and ATPase activity of MutL: implications for DNA repair and mutagenesis. Cell 95:541–552

    Article  CAS  PubMed  Google Scholar 

  16. Guarne A, Junop MS, Yang W (2001) Structure and function of the N-terminal 40 kDa fragment of human PMS2: a monomeric GHL ATPase. EMBO J 20:5521–5531

    Article  CAS  PubMed  Google Scholar 

  17. Hall M, Shcherbakova P, Kunkel T (2002) Differential ATP binding and intrinsic ATP hydrolysis by amino-terminal domains of the yeast Mlh1 and Pms1 proteins. J Biol Chem 277:3673–3679

    Article  CAS  PubMed  Google Scholar 

  18. Spampinato C, Modrich P (2000) The MutL ATPase is required for mismatch repair. J Biol Chem 275:9863–9869

    Article  CAS  PubMed  Google Scholar 

  19. Bende SM, Grafstrom RH (1991) The DNA binding properties of the MutL protein isolated from Escherichia coli. Nucleic Acids Res 19:1549–1555

    Article  CAS  PubMed  Google Scholar 

  20. Ban C, Junop M, Yang W (1999) Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97:85–97

    Article  CAS  PubMed  Google Scholar 

  21. Shcherbakova P, Hall M, Lewis M et al (2001) Inactivation of DNA mismatch repair by increased expression of yeast MLH1. Mol Cell Biol 21:940–951

    Article  CAS  PubMed  Google Scholar 

  22. Fukui J, Nishida M, Nakagawa T, Masui R, Kuramitsu S (2008) Bound nucleotide controls the endonuclease activity of mismatch repair enzyme MutL. J Biol Chem 283:12136–12145

    Article  CAS  PubMed  Google Scholar 

  23. Kadyrov FA, Dzantiev L, Constantin N, Modrich P (2006) Endonucleolytic function of MutLα in human mismatch repair. Cell 126:297–308

    Article  CAS  PubMed  Google Scholar 

  24. Kadyrov FA, Holmes SF, Arana ME et al (2007) Saccharomyces cerevisiae MutLα is a mismatch repair endonuclease. J Biol Chem 282:37181–37190

    Article  CAS  PubMed  Google Scholar 

  25. Alou AH, Jean M, Domingue O, Belzile FJ (2004) Structure and expression of AtPMS1, the Arabidopsis ortholog of the yeast DNA repair gene PMS1. Plant Sci 167:447–456

    Article  CAS  Google Scholar 

  26. Jean M, Pelletier J, Hilpert M, Belzile F, Kunze R (1999) Isolation and characterization of AtMLH1, a MutL homologue from Arabidopsis thaliana. Mol Gen Genet 262:633–642

    Article  CAS  PubMed  Google Scholar 

  27. Jackson N, Sanchez-Moran E, Buckling E, Armstrong SJ, Jones GH, Franklin FCH (2006) Reduced meiotic crossovers and delayed prophase I progression in AtMLH3-deficient Arabidopsis. EMBO J 25:1315–1323

    Article  CAS  Google Scholar 

  28. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  29. Sambrook J, Russel DW (2001) Molecular cloning—a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  30. Plaxton WC (1989) Molecular and immunological characterization of plastid and cytosolic pyruvate kinase isozymes from castor-oil-plant endosperm and leaf. Eur J Biochem 181:443–451

    Article  CAS  PubMed  Google Scholar 

  31. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  32. Burnette WN (1981) Western Blotting: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112:195–203

    Article  CAS  PubMed  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  34. Spampinato CP, Gomez RL, Galles C, Lario LD (2009) From bacteria to plants: a compendium of mismatch repair assays. Mutat Res 682:110–128

    Article  CAS  PubMed  Google Scholar 

  35. Dion E, Li L, Jean M, Belzile F (2007) An Arabidopsis MLH1 mutant exhibits reproductive defects and reveals a dual role for this gene in mitotic recombination. Plant J 51:431–440

    Article  CAS  PubMed  Google Scholar 

  36. Li L, Dion E, Richard G, Domingue O, Jean M, Belzile FJ (2009) The Arabidopsis DNA mismatch repair gene PMS1 restricts somatic recombination between homeologous sequences. Plant Mol Biol 69:675–684

    Article  CAS  PubMed  Google Scholar 

  37. Alou A, Azaiez A, Jean M, Belzile F (2004) Involvement of the Arabidopsis thaliana AtPMS1 gene in somatic repeat instability. Plant Mol Biol 56:339–349

    Article  CAS  PubMed  Google Scholar 

  38. Li L, Jean M, Belzile F (2006) The impact of sequence divergence and DNA mismatch repair on homeologous recombination in Arabidopsis. Plant J 45:908–916

    Article  CAS  PubMed  Google Scholar 

  39. Gustafson C, Govindarajan S, Minshull J (2004) Codon bias and heterologous protein expression. Trends Biotechnol 22:346–353

    Article  Google Scholar 

  40. Räschle M, Marra G, Nyström-Lahti M, Schär P, Jiricny J (1999) Identification of hMutL, a heterodimer of hMLH1 and hPMS1. J Biol Chem 274:32368–32375

    Article  PubMed  Google Scholar 

  41. Cutalo JM, Darden TA, Kunkel TA, Tomer KB (2006) Mapping the dimer interface in the C-terminal domains of the yeast MLH1–PMS1 heterodimer. Biochemistry 45:15458–15467

    Article  CAS  PubMed  Google Scholar 

  42. Rosano GL, Ceccarelli EA (2009) Rare codon content affects the solubility of recombinant proteins in a codon bias-adjusted Escherichia coli strain. Microb Cell Fact 8:41

    Google Scholar 

Download references

Acknowledgements

We acknowledge research support from Fundación Antorchas and CONICET. RLG and CG are fellows of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). CPS is a member of the Researcher Career of the same institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia P. Spampinato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galles, C., Gomez, R.L. & Spampinato, C.P. PMS1 from Arabidopsis thaliana: optimization of protein overexpression in Escherichia coli . Mol Biol Rep 38, 1063–1070 (2011). https://doi.org/10.1007/s11033-010-0203-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-010-0203-2

Keywords

Navigation